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Abstract— Designing novel application development environ-
ments (ADEs) is a growing area of systems research within
the human-robot interaction (HRI) community. This research
involves the design of a novel system, the ADE, to afford end
users and application designers the ability to develop robot
applications. Researchers then usually validate their ADEs in
the form of user studies or a series of case studies. In this
paper, we highlight a problem with the typical approach to
conducting ADE research within HRI—there is currently little
standardization in how these systems are designed, developed,
and validated, leading to difficulty in sharing resources between
different research groups and the inability to compare similar
ADEs to each other. We argue that a standardized formal
representation embedded within an Interaction Specification
Language (ISL) can lead to more streamlined development and
validation of ADEs for HRI. Furthermore, we discuss several
desired characteristics that an ISL should embody.

I. INTRODUCTION

The human-robot interaction (HRI) community has pro-
duced significant advances in designing application devel-
opment environments (ADEs) that facilitate the construction
of social, service, or collaborative robot programs—static
specifications of a robot’s actions and decisions that it
should make when faced with internal and external stimuli.
ADEs usually include a number of predefined, but general,
descriptive primitives for a robot platform (e.g., move, carry,
lift, hold), as well as operational models (e.g., motion plans,
behaviors) that can be executed to complete or carry out
those descriptive models. Crucially, the use of an ADE to
specialize a robotic platform to a particular application is
usually done by domain experts or robot end users. Any low-
level programming (e.g., functions for sensing and actuation)
that is typically done by robotics engineers is integrated
within the ADE and robotic platform, and is not usually
exposed to the ADE end user. Researchers in academia and
industry have designed a wide range of ADEs, often either for
research or market use. Notable examples include CoSTAR
[1] and Moveit! Studio [2] for developing collaborative robots,
iCustomPrograms [3] and Vipo [4] for service robots, and
Choregraphe [5] and the trigger-action programming Tailoring
Environment for social robots [6].

Although ADEs can be created for a variety of purposes,
our focus is on those created for research, not (at least, yet)
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for the market. ADE research goals are often to improve
HRI application development for technical non-experts and
robot end users by way of investigating novel interfaces and
development paradigms. To pursue these goals, a researcher
(or a team of software engineers working under the direction
of the researcher) must implement their design into a full-
fledged system—the ADE itself. The ADE must then be
validated. Validation of an ADE often occurs through a test
suite, demonstrations, or user testing, i.e., asking people to
use the platform to program a robot or interact with a robot
executing programs created by the platform. The purpose
of validation is to show that the ADE achieves the research
goals set at the beginning of the project.

Unfortunately, relatively little standardization exists in how
researchers perform ADE design and validation, leading to
a diverse, yet inconsistent array of ADEs with a limited
ability to compare between them. One crucial component
of ADE design that suffers from a lack of standardization
is the underlying formal representation of robot programs,
which defines the semantics of human-robot interactions (e.g.,
robot actions, human behaviors, external and internal events,
working memory, world state, etc.). Without a consistent
underlying formal representation (which we sometimes refer
to as simply representation), it is difficult to compare ADE
functionality, undergo consistent performance evaluations to
situate the technical capabilities of one ADE with respect to
others (i.e., ADE1 guarantees that loops terminate, whereas
ADE2 makes no such guarantee), and benchmark the quality
of programs produced by potential end users of different
platforms (e.g., evaluating whether users of ADE1 produced
programs of significantly higher quality than users of ADE2).

This lack of standardization also presents a missed oppor-
tunity to improve the efficiency of ADE research. Rather than
being able to use and adapt off-the-shelf code to streamline
ADE development, researchers often must develop their own
ad hoc representations and runtime environments from the
ground up. Furthermore, researchers are unable to exploit
common ADE performance benchmarks, such as test suites,
that would streamline ADE validation.

To address these issues, we advocate for the creation
of a standardized formal representation for HRI programs
embedded within a human-robot Interaction Specification
Language (ISL). Figure 1 illustrates how an ISL could be
situated within a basic set of stakeholders of ADE design:
the ADE Researcher (center), their Industrial Partner (left),
and the ADE End User (right). We believe that having a
shared representation between researchers and their industrial
partners would increase resource sharing, thus streamlining
the ADE research process and improving ADE validation.
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Fig. 1. An illustration of how the ISL can fit within the HRI application development process.

In what follows, we propose six guidelines for the cre-
ation of an ISL, concretizing each guideline with a simple,
speculative language that we created ourselves. We introduce
our illustrative, example language below within a “notional
grammar.” In this paper, our notional grammar is intended
purely for demonstration purposes and to generate discussion
about the shared responsibility of academia and industry to
bring about an ISL to fruition.

II. NOTIONAL GRAMMAR

For a standardized ISL, we envision a singular, common
domain-specific language or a family of languages for
human-robot interaction that is akin to the Planning Domain
Definition Language (PDDL) [7] for automated planning,1

Game Description Language (GDL) [9] for game theory, or
agent-oriented languages for Belief-Desire-Intention agents
(e.g., [10], [11]). Although certain categories of languages
and formal representations dominate within human-robot
interaction ADE research, no single language is yet considered
standard. We may either adopt an existing language as the
basis of our ISL or develop a new language from scratch.

To help illustrate the considerations for developing a future
ISL, we have created a simple notional ISL grammar that fits
within the state or flow-based class of representation popular
with many existing ADEs (e.g., [4], [5], [12]–[15]). Our
notional grammar contains nodes n that describe a robot’s
current state, actions, and/or goals; events e, or any internal
or external events that the robot can sense; and guards g,
or conditionals on the state of the world. We refer to [16]
for a distinction between guards (called “states” in [16]) and
events. An expression subset of the grammar describes a start
node and the transition relations between nodes n:

Initialization begin := begin n

Transition trel := [e] n (g) → n

Event e := id | nil
Guard g := m ϕ value | g ψ g | nil

1There are a variety of other languages for automated planning (e.g.,
ANML [8]) that we plan to explore as possible directions for the ISL.

A transition [e] n1 (g) -> n2 can be interpreted as,
“When event e occurs, if guard g is satisfied then node n1
will transition to node n2.” An event is denoted by a string
identifier. For the guard, m is a variable in the robot’s memory,
ϕ is a relational operator that compares m to some value,
and ψ is a logical operator. Another expression subset of the
grammar defines memory, nodes, and expressions:

Nodes ndec := let n = expr

Memory mdec := var m | var m ← value

Expression expr := func(parameters)
| m ← func(parameters)
| m ← value

| expr, expr

Here, ← refers to memory assignment and vertical bars
are metasyntax. Commas (,) denote concurrency. The func
token refers to a function over the robot’s capabilities.

To illustrate, consider the code snippet in Figure 2 (also
visualized in Figure 6c), in which a delivery robot transfers
an item from its tray to a hotel guest. Line 1 (L1) declares
a variable to store rating. L2-6 label nodes n1-5 with
robot actions. In L4, we can assume that queryRating is
defined so that the robot visually prompts the person to rate
its performance and returns a value on a scale from one to
five. L7 begins the program at n1, in which the robot opens
its tray. L8-12 define the transition relations of the program—
after hearing the deliveryReceived event, the robot will

1 var rating
2 let n1 = openTray
3 let n2 = closeTray
4 let n3 = rating <- queryRating
5 let n4 = happyDance
6 let n5 = goodbye
7 begin n1
8 [deliveryReceived] n1 -> n2
9 [] n2 -> n3

10 [] n3 (rating>=4) -> n4
11 [] n4 -> n5
12 [] n3 (rating<4 or time>20) -> n5

Fig. 2. Code snippet for making a delivery.



close its tray (L8) and ask the person for a rating (L9). If it
receives a high rating, the robot will perform a happyDance
(L10) and say goodbye (L11). Otherwise, if a low rating
is received or more than 20 seconds have passed, it will say
goodbye without performing a dance (L12).

Like other candidate representations for an ISL, our
notional grammar has both benefits and drawbacks, which
serve as a basis of discussion in sections §III and §IV.

III. PROPOSED ISL GUIDELINES

Using our notional grammar for illustration, we describe
our guidelines for creating an ISL. Each guideline is guided
by our goal of streamlining ADE design and facilitating better
and more consistent validations. The first three guidelines
refer to the ability of the ISL to (1) support existing formal
representations, (2) support different levels of expressiveness,
and (3) support predefined and reusable skills. The next three
properties pertain to the ISL being (4) verifiable at design time,
(5) consistent at runtime, and (6) both application and domain
agnostic. Each guideline is accompanied by an example code
snippet within our notional grammar for illustration, followed
by implications for academic and industrial practitioners.

A. Support Existing Formal Representations

Though no standardized formal representation exists across
modern ADEs, there are many current, well-known represen-
tations that individual ADEs use for encoding programs. For
example, users of CoSTAR create programs as behavior trees
[1]; users of RoVer create programs as transition systems
[14]; and users of the situated live programming platform
create event-driven trigger-action programs [17].

The wide variety of existing formal representations un-
derlying different ADEs attests to the unique benefits and
drawbacks that each representation affords. Choosing an ideal
representation is, in fact, a key component of researching
novel ADEs. The chosen representation of an ADE affects
user experience (e.g., trigger-action programming is more
accessible to programming novices) and the ease of adopting
state-of-the-art software engineering techniques such as verifi-
cation, synthesis, and repair (e.g., transition systems can often
be used as direct input to program verification techniques
[18]). The underlying representation of an ADE can further
restrict the functionality of the robot (e.g., trigger-action
programming limits the ability to designate a sequence of
behaviors for the robot to perform). Given the meticulousness
required of choosing a representation for a specific application
domain or use case, we believe that enforcing a uniform
formal representation without regard to individual circum-
stances would be careless. Rather, the role of the ISL should
therefore be to support these existing representations by
serving as a common, underlying representation. In essence,
ADE researchers can choose any front-end representation to
expose to their end users or back-end representation upon
which to perform computation, but any programs generated
by the ADE should ultimately be compilable to the ISL.

Case Study. Many existing languages and representations
for human-robot interactions are equivalent under Chom-

1 var person
2 var currLoc
3 let n1 = findPeople
4 let n2 = person <- chooseRandomPerson
5 let n3 = currLoc <- moveTo: person
6 let n4 = display: "Please allow me to pass."
7 let n5 = greet
8 begin n1
9 [] n1 -> n2

10 [] n2 -> n3
11 [interrupted] n3 -> n4
12 [] n4 -> n3
13 [] n3 (currLoc==person) -> n5

Fig. 3. Greeter program from [3] converted to our notional grammar.

sky’s hierarchy, so converting to or from an ISL will be
straightforward. Consider the block-based greeter program
crafted using the iCustomPrograms ADE (see [3], Figure
1b). In this program, the robot detects people, chooses
a random person, and then moves toward that person. If
interrupted in its approach, the program begins a while loop
of requesting space and subsequently resuming navigation.
Upon reaching its destination, the robot will greet the person.
To illustrate how an ISL can operationalize a common,
underlying representation to which other representations can
convert, we have approximated [3]’s greeter program within
our notional grammar in Figure 3.

L1-2 declare variables that store the chosen person to
approach and keep track of the robot’s location. L3-7 label
nodes n1-5 with ISL expressions, with L4-5 assigning values
to person and currLoc. L8 sets the initial state of the
program to n1. Finally, L9-13 describe the node transitions.
Note that node n3 must transition to n4 if the robot observes
the interrupted event, while n3 can only transition to
n5 if the robot observes that it is close to the person.

Implications. While we envision research groups being
able to employ their own favorite “surface representations,”
an underlying representation, the ISL, must still be decided
on. A logical solution would be to choose an already popular
representation to minimize the compilation effort of existing
surface representations to the ISL. The state-based represen-
tation is popular in ADE design and is the basis for our
notional grammar, but this representation has limitations. For
example, state-based representations become unintuitive as
complexity scales and require adaptation to incorporate certain
control structures like for-loops. Alternatively, block-based
programming is an emerging favorite among ADE researchers
and industry partners but can be more difficult to analyze due
to the underlying program flow being less explicit. Choosing
a common underlying representation will necessarily involve
additional discussion amongst all stakeholders of ADE design.

B. Support Different Levels of Expressiveness

Existing ADEs support different levels of expressiveness,
i.e., the level of detail at which programs can be specified. [12]
describes an architecture that includes a high-level application
layer and lower-level behavior and information processing
layers. The application layer enables users with lower amounts
of technical expertise to specify the flow of a human-robot
interaction and the decisions that the robot may make (useful



for technical non-experts), while the lower layers enable users
with higher technical expertise to specify individual robot
behaviors. Other ADEs extend behavioral-level expressiveness
to technical non-experts, such as through Choregraphe’s
keyframing functionality [5] and through Puppet Master’s
use of programming by demonstration [19].

It seems clear that an ISL should support hierarchical con-
structions with functionality at different levels of abstraction.
At the high level, the ISL should support functionality similar
to existing approaches for specifying interaction flow, such as
the encapsulation of robot behaviors within discrete actions
and the symbolic representation of external phenomena (e.g.,
human behavior and signals from Internet-of-Things (IoT)
devices) as both triggers and world state. Furthermore, the ISL
should be modular such that individual agents (e.g., the robot
together with any human and IoT devices in the vicinity) can
be specified separately with shared resources.

At the low level, an ISL should support functionality similar
to existing robot programming frameworks and software
development kits (SDKs). Examples include the robot op-
erating system (ROS), which facilitates asynchonicity and
parallelism [20], and NaoQi, which enables the manipulation
of precise joint angles, continuous-time behaviors, and raw
sensor input [5]. The ability to encode low-level functionality
into a formal representation is crucial to the existence of
development platforms that support keyframing (e.g., [5]) and
programming-by-demonstration (e.g., [21]).

It is clear that our vision of the ISL involves support
for multiple components at each level of the hierarchically
modular design, including such details as continuous time
and precise joint angles, to name some examples. However,
a singular language that captures all of these details will be
cumbersome to create, difficult for ADE researchers and their
industry partners to adopt, and inflexible to trends in the field.
Therefore, we propose that an ISL not encompass a single
all-purpose formal representation, but instead an extendable
and parameterizable family of representations, similar to the
different versions and extensions of PDDL.

Case Study. To enable different levels of program expres-
sion, we require an extension of our notional grammar that
supports modularity and hierarchy. Using this extension, we
expand our hotel robot example to a hierarchical specification
with four separate modules, visualized in its entirety within
Figure 6. In addition to including the code snippet from Figure
2, the expanded example incorporates higher-level task flow
that guides the robot in receiving orders and moving to drop-
off points, low-level actuation, and battery management. If
the robot’s battery becomes too low, the robot must halt its
delivery, discard undelivered items, and charge its battery.

Figure 4 defines high-level task flow. L1 instantiates global
state—whether the robot is currently charging its battery.
L2 begins a main module. Within main, L3 instantiates
trayOccupied to track whether the robot’s tray is full, and
L4 declares room to store the robot’s current delivery target.
L5-9 assign expressions to nodes n1-5. Nodes n2, n4, and
n5 are assigned multiple expressions each. In n2, the robot
receives its order from the front desk and designates a room

1 var isCharging <- false
2 module main
3 var trayOccupied <- false
4 var room
5 let n1 = moveTo: charging
6 let n2 = room <- receiveOrder,

trayOccupied <- true
7 let n3 = moveTo: room
8 let n4 = completeDelivery: room,

trayOccupied <- false
9 let n5 = cancelDelivery,

trayOccupied <- false
10 begin n1
11 [] n1 (isCharging==false) -> n2
12 [] n2 (isCharging==false) -> n3
13 [] n3 (isCharging==false) -> n4
14 [batteryLow] n1, n2, n3 -> n5
15 [] n4, n5 -> n1
16 endmodule

Fig. 4. Main module to control a delivery robot.

1 module battery
2 var level
3 let n1 = level <- checkBattery

isCharging <- false
4 let n2 = level <- chargeBattery,

isCharging <- true
5 begin n1
6 [] n1 (level>=10) -> n1
7 [batteryLow] n1 (level<10) -> n2
8 [] n2 (level<100) -> n2
9 [] n2 (level==100) -> n1

10 endmodule

Fig. 5. Battery module that runs parallel to the main module.

for the order, in addition to setting trayOccupied to true.
In n4, the robot delivers the order and sets trayOccupied
to false. Alternatively, the robot can cancel its delivery (n5)
and set trayOccupied to false. L10 starts the program at
n1. Finally, L11-15 describe the transition relations, with L14
listening for a batteryLow event that will cause the robot
to cancel an in-progress delivery (n5). L16 ends main.

Battery usage is monitored and handled within a separate
and concurrent module (Figure 5). L1 begins the battery
module. L2 declares a variable to store the robot’s battery
level. L3-4 assign expressions to nodes n1-2, which update
level by checking or charging the battery. L5 starts the
program at node n1, and L6-9 describe the transitions. The
robot continually monitors its battery while level is above
or equal to 10% (L6). When level is below 10%, the robot
will enter its charging state (L7), within which it will stay
until its battery level is 100% (L8). When the battery level is
100%, the robot will stop charging (L9). L14 ends battery.

The main and battery modules run concurrently to each
other and synchronize with the batteryLow event. Syn-
chronization forces the transition on L14 of main to occur
iff (if and only if) the transition on L7 of the battery module
occurs. Note that if the battery level gets low when the robot
is already at the target room (node n4, module main), the
delivery must finish before main and battery can synchronize
on the batteryLow event. Synchronization of concurrent
transition systems is known as a handshake [18].

For hierarchy within the ISL, we can imagine defining
robot functions as low-level ISL modules. For example, the
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Fig. 6. An illustration of the hierarchical delivery specification, referencing code snippets in §II and §III-B. Filled circles (top) are nodes in the high-level,
concurrent main and battery modules. Unfilled circles (bottom) are nodes in the completeDelivery and happyDance modules, which define lower-level
functionality through ISL logic. Transitions are labeled with events (in brackets) and guards. Main and battery synchronize on the [batteryLow] event.

completeDelivery action within the main module may
be defined by another completeDelivery module encompassing
the code from Figure 2. Within completeDelivery, we can
extend our notional grammar even further to control low-level
actuation. As an example, to define the robot’s happyDance
action in Figure 2, perhaps a happyDance module contains
nodes that are assigned ROS publishers that cause the robot
to wiggle back and forth enthusiastically. The grammar must
be further extended to set the rate at which the transitions
between n1 and n2 occur (once every 0.5 seconds):

1 let n1 = rospub: "cmd_vel..." # turn left
2 let n2 = rospub: "cmd_vel..." # turn right

...
3 [] n1 -> 0.5 n2
4 [] n2 -> 0.5 n1

Implications. While our notional grammar has been shown
to be hierarchically expressive, ADE researchers must decide
which levels of the hierarchy are actually needed within the
ISL. Low-level ISL modules such as happyDance may be
unnecessary as these skills may be provided pre-trained or pre-
engineered by an industrial partner. Researchers should not
have to reimplement these skills within the ISL. The ability
of the ISL to reuse existing, non-ISL skills is discussed in
the next section.

C. Support Predefined and Reusable Skills

The purpose of ADEs in HRI is to facilitate task scripting,
usually for a set of specific use cases, that guide a robot
on how to perform a task or engage in a social interaction.
However, not all components of an HRI platform need or
should be formally specified in the ISL syntax.

The ISL must also support the integration of professionally
engineered black-box robot skills, e.g., visual servoing and
autonomous navigation and localization. Skills should be able
to be defined by ADE end users as well, such as if a user
wishes to keyframe a waving behavior on a social robot.
The ISL should additionally support non-hand crafted skills,
e.g., skills that are trained via machine learning. Learned,
engineered, and user-defined black-box skills can then be
treated as reusable functions available for parameterization

and instantiation at different levels within the ISL’s expres-
siveness hierarchy. At the low level, a skill may consist of an
individual robot behavior or cue. At higher levels, a skill may
consist of a learned interaction flow or high-level program
structure, such as a conversational module.

The ISL should additionally recognize the ability of robots
to make autonomous decisions via AI planning. It should
therefore support the ability of ADE researchers and end
users to label robot actions and skills with preconditions and
positive and negative effects (postconditions).

Case Study. The case study presented in §III-B, Support
Different Levels of Expressiveness, contains many examples
of incorporating predefined reusable learned or engineered
skills into ISL programs. As an example, within the robot’s
moveTo functionality (L5 and L7 of the main module),
an ADE end user need not reason about the exact logic
necessary to make the robot move to its destination. Instead,
the user can leverage the robot’s autonomous navigation
and localization capabilities. Similarly, the checkBattery
function (L3, module battery) likely corresponds to an
engineered, proprietary, and closed-sourced function within
the robot’s SDK that is linked to the ISL.

Robot actions may also correspond to learned skills.
Rather than writing an ISL module to define the robot’s
happyDance behavior, ADEs can leverage repeated inter-
actions between the robot and hotel patrons to train this skill.
Similar training can be performed with the openTray and
closeTray behaviors within the completeDelivery module—
the robot can leverage the ratings it obtains (queryRating)
to learn an optimal policy for (a) notifying patrons of its
arrival, (b) opening its tray, (c) waiting for patrons to remove
items from its tray, and (d) closing its tray. The learned skills
can then be leveraged and reused within the ISL logic.

Finally, as an example of how the ISL can integrate with an
AI planner, consider the receiveOrder action (L6, main
module). A minimalist implementation of receiveOrder
may assume that the robot is already positioned near the
front desk (where the order is ready to be picked up) and
has opened its tray to receive the order. However, neither
moving to the front desk nor opening its tray is included in



the main module. Therefore, the minimalist implementation
of receiveOrder must be accompanied by a task planner
at runtime to achieve the preconditions of receiveOrder.
Enumerating the pre and postconditions of receiveOrder
is possible by defining the action within STRIPS-like syntax:

action receiveOrder()
preconds: at location=front desk

tray open=true
postconds: tray open=false

Implications. Numerous industrial constraints may inform
the integration of predefined and reusable skills into the ISL.
One key constraint is to ensure the protection of intellectual
property. Another is to provide entry points in the ISL for
each stakeholder involved in the development of a robot
platform or a proprietary ADE. The role of management,
engineers, designers, and external collaborators (e.g., third-
party developers) involved in the development of intellectual
property should be a deciding factor for how each party would
benefit from developing at the ISL level or at the level of
defining reusable robot skills, and to what degree a robot’s
program logic should be allocated to these skills versus being
defined within ISL. ADE researchers must converse with their
industrial partners to understand these constraints.

D. Verifiable at Design Time

Programs produced by development platforms should be
easily verifiable, i.e., the logic should be easily shown to
adhere to a set of correctness properties. An ISL must
therefore embed an easily verifiable representation (e.g., a
transition system verifiable via model checking). Properties of
interest must also be able to be represented within standard
property-specification logic, such as linear temporal logic
(LTL) for discrete systems, signal temporal logic (STL) for
cyber-physical systems, or probabilistic linear temporal logic
(PLTL) for probabilistic systems. Although the complex,
expressive form that the ISL will likely assume is difficult to
verify in theory, the modularity and hierarchical construction
of the ISL (see §III-B) will greatly further its verifiability.

Case Study. Consider the case study from §III-B, Support
Different Levels of Expressiveness. By modeling the case study
within a model checker, numerous interesting properties can
be checked. Consider a simple rule in LTL that the program
should not deadlock: G[F main=n1].

The Gϕ and Fϕ operators indicate that in all paths through
a program, ϕ will hold Globally throughout the program or
at some point in the Future. The above property therefore
translates to, “From any node in the program (globally),
all paths will lead back to the starting node in module
main at some point in the future.” We may also wish to
ensure that the robot will never charge its battery while its
tray is full: !F[isCharging & trayOccupied]. This
property translates to, “There is no future state in the program
in which the robot charges its battery while its tray is full.”
Both properties can be directly provided as input to an off-the-
shelf model checker, such as PRISM [22]. Given the similarity
of our notional grammar to the PRISM language, translating

the delivery case study to a verifiable form is straightforward.
Running the model checker leads to the conclusion that both
properties are satisfied.

Implications. The ISL must be easily verifiable. In the
above case study, our notional grammar is shown to be
verifiable through its straightforward translation to a model
checker, PRISM. It is then the responsibility of the HRI
community, both academia and industry alike, to leverage the
verifiable ISL to standardize and streamline ADE validation.
Industrial partners should ship platform-specific ISL modules
with properties that ensure safe operation of their robot or that
their runtime environments are guaranteed to satisfy. ADE
researchers in both academia and industry should additionally
co-construct a repository of useful properties that can be used
as quality metrics for ADE validation. This repository can
be expanded as ADE research progresses.

E. Consistent at Runtime

Even if they satisfy a set of correctness properties, ISL
programs on different robot platforms may be inconsistent
at runtime due to platform and contextual variability. Even
if using the same ADE, different research groups must
sometimes construct ad hoc runtime environments to execute
ISL programs. For example, if an ISL program (perhaps
naı̈vely) assumes that a path exists to the robot’s destination
yet no path exists at runtime, then one runtime environment
may cause the robot to wait forever while a different runtime
environment equipped with a planner may replan a different
sequence of actions for the robot to achieve the same effect.

The ISL should anticipate and enumerate runtime contin-
gencies that are unspecified or underspecified by ADE end
users. When an ADE is released to the research community,
research teams may also provide a “contingency sheet”
that specifies the default fail-safe protocols that an ISL-
programmed robot will exhibit in the event of underspecified
or unforeseen phenomena.

Case Study. With ROS, robot application developers
can set runtime parameters to enable consistent performance
across different platforms, such as the base velocity and
acceleration of a mobile robot. For consistent execution of
ISL programs, additional standardization is similarly required
at the meta-level—outside of the program logic. Consider the
case study from §III-A, Support Existing Formal Represen-
tations. Despite its simplicity, there is ample opportunity
for platform or context-specific runtime contingencies to
cause different robots to deviate in different ways from
the expected program flow. Perhaps the ambient lighting
inhibits the robot’s ability to detect people, which may cause
one robot platform to hang indefinitely, while another might
replan its task or terminate the program altogether. As another
example, if someone attempts to interrupt or interact with
the robot as it attempts to execute an ISL program, different
runtime environments may cause the robot to either pause
its execution to handle the interruption or continue without
acknowledgment. Each of these examples affects the flow of
an ISL program.



With a contingency sheet, the ISL runtime environment
can be controlled and enforce consistent program flow on
different platforms. An example contingency sheet is below:

1 onDeadlock: requestAssistance
2 timeout: 20
3 onInterrupt: ignore
4 onTerminate: moveTo charging

Within this contingency sheet, if the robot experiences a
deadlock, it will issue a requestAssistance action to notify a
human of the issue, receive assistance, and resume execution
once the issue has been resolved. To prevent the robot from
waiting too long for an event to occur, a default timeout
can be set for when the robot ceases listening for the event.
If someone attempts to interrupt the robot, the robot will
ignore them. Lastly, the robot will handle task termination
by moving back to its charging station.

Implications. The enumeration of runtime contingencies
can provide ADE researchers with greater control over their
ISL runtime environments and help ensure that the same ISL
program behaves similarly on different robot platforms. A
weakness of our notional grammar, and of ADE development
in general, is that these contingencies cannot necessarily be
anticipated nor handled within program logic. Rather, these
contingencies often arise at the platform level.

Therefore, we advocate that the adoption of an ISL
encourages industry partners—the designers and developers
of robot platforms—to assist in the standardization of the
ISL runtime environment. Industrial entities should maintain
and incrementally expand a shared repository of contingency
parameters. When shipping robots to customers, industrial
partners can provide a parameterized set of contingencies from
within this repository. Going a step further, industry partners
can also ship standard runtime environments with their robots
that interpret ISL specifications natively, furthering the goal of
consistent, cross-platform robot deployment. ADE researchers
can provide support to their industrial partners by reporting
when new, unforeseen contingencies arise, so that these
contingencies may be added to the shared repository.

If not careful, however, contingency sheets may weaken
the standalone expressiveness of the ISL itself. Contingency
sheets must therefore exist solely as sets of overridable,
default runtime parameters absent of program flow or logic.
Additionally, the ISL should clearly differentiate runtime
platform characteristics (i.e., those within a contingency sheet)
from core program characteristics (i.e., those within the ISL).

F. Application and Domain Agnostic

The ISL should be nonspecific in its support for different
robot form factors, application areas (i.e., social, service,
and collaborative robotics) and domains (e.g., healthcare,
manufacturing, education, etc.) within HRI. At a minimum,
the ISL itself should therefore not contain any platform
or domain-specific tokens. Instead, platform and domain
specificity can be achieved by supporting SDK integration.
ISL modules should therefore be constructed to wrap SDK
functionality.

SDK integration provides an additional opportunity for
industry to support the standardization of ADE research.
Consider the multitude of robot platforms and their SDKs
that support volume control. Industry partners can wrap SDK
functionality within a standardized ISL module with a stan-
dardized module name and parameters, e.g., setVolume:
level. ADE researchers can then use the same ISL syntax
to interface with any platform that supports volume control.

Case Study. Consider two separate social robot platforms
with SDK support for changing robot volume. Suppose that
the first platform provides Android support with the following
function header: void setVolume(int level). The
second platform provides Python support for a similar
function but with a different header: set volume(level).
Assuming that the logic of each function is equivalent,
different industrial entities may then agree on a standardized
volume-control function header, setVolume: level. The
following ISL code is then easily translatable to either robot:

1 import setVolume from android_robot
2 let n1 = setVolume: 80

L1 imports wrapped functionality from the Android robot,
and L2 uses this functionality by setting the robot’s volume.
Changing from the Android to the Python robot requires
modifying only the last part of the import statement from
android robot to python robot.

Implications. Import statements help the notional grammar
to be platform agnostic, but full domain and platform non-
specificity will require substantial coordination between
industrial partners. Cross-platform code must have nearly
identical functionality for ISL programs to behave consistently
on different platforms. To ensure consistency, industrial
partners should decide on a common set of functions that
possess similar inputs and outputs, e.g., volume control.
For robots with inconsistent functionality, ADE researchers
can bear the responsibility of creating wrapper functions
containing a combination of the platform SDK and ISL logic.

IV. DISCUSSION

Our vision of a standardized human-robot interaction
specification language, or ISL, is motivated by the need
for more streamlined ADE design and validation. In what
follows, we elaborate on the benefits that an ISL might have
within the academic and industrial HRI communities and
offer a vision of future work.

a) Potential ISL Benefits: We expect that an ISL would
streamline the work of ADE researchers, who could more
easily reuse existing ISL functionality. For example, after
constructing and linking a novel ADE to the ISL, researchers
can leverage a multitude of existing robot platforms with
standardized ISL runtime environments. Furthermore, an ISL
that follows our proposed guidelines would avoid the need
for researchers to adopt unfamiliar formal representations.
Instead, the ISL must support existing formal representations
and existing levels of expressiveness to which researchers
have already become accustomed.

We expect that an ISL would also ease the burden of vali-
dation, since the verifiable and predictable characteristics of



the ISL would enable the creation and sharing of correctness
properties (e.g., in LTL) and runtime parameters. The creation
and sharing of correctness properties and runtime parameters
would additionally facilitate a better comparison between
separate ADEs. A standard set of properties and parameters
can be used as benchmarks within the HRI ADE research
community (e.g., under a specific set of runtime parameters,
ADE1 guarantees that its programs satisfy a greater number
of properties than ADE2). Furthermore, a standard program
representation enables researchers designing an ADE to create
and share programs with other researchers designing other
ADEs. In our vision, research communities can use each
other’s programs as test cases that prove that their ADE can
produce programs equivalent to existing ADEs.

Lastly, an ISL would help academic and industrial re-
searchers bridge their work across the intellectual property
boundary. A proprietary development platform can be more
easily extended, utilized, or replicated if the underlying
representation of the programs it creates is the same as that
used by researchers in other organizations.

b) Future Work: Due to the potentially far-reaching
benefits that an ISL would have on the research community
on HRI systems, we envision its development as an effort
that bridges academia and industry. Academic researchers can
jumpstart open-source ISL development. If the popularity of
an ISL increased, industrial researchers could greatly benefit
the wider HRI community by integrating the ISL into the
SDKs of their robots. Companies that build development
platforms for their robots may consider enabling their ADEs’
resulting programs to be compiled to the ISL representation.
Recognizing that we, the authors, embody an academic
rather than industrial research perspective, a necessary first
step toward commercial integration of an ISL will be to
more closely align our vision with that of the industrial
HRI community. We aim to learn more about industry-
specific challenges, such as the involvement of multiple
stakeholders within the development of a robot platform,
how an ISL can be constructed so as not to restrict third-
party developers from extending a robot platform, and how an
ISL can facilitate the passing of design constraints between
independent stakeholders.

Existing languages and representations may serve as start-
ing points for creating an ISL. PRISM [22] and UPPAAL [23]
serve as a basis for our notional grammar due to their direct
support for verification. Agent planning programs similarly
allow the specification of agent goals within transition
systems, while additionally incorporating a planning domain
that enables these programs to be synthesized, or realized [24].
Additional languages have emerged from within the Belief-
Desire-Intention (BDI) paradigm that enable the expression
of goals, such as AgentSpeak [10] and variants of CAN
(e.g., [11]). BDI languages have also been used to define
semantics for goal life cycles [25]. For supporting predefined
and reusable skills within a choice representation, Goal Skill
Networks offer insight into encoding learned policies within
hierarchical goal networks [26]. Additional, non-state-based
formalisms are common in robotics (e.g., [27]) and should

also be investigated as potential starting points. Bringing an
ISL to fruition may involve extending one of these existing
representations to adhere to all six guidelines, or using them
as inspiration to develop entirely new representations.
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