
Goal-Oriented End-User Programming of Robots
David Porfirio

NRC Postdoctoral Research Associate
U.S. Naval Research Laboratory
Washington, DC, United States
david.porfirio.ctr@nrl.navy.mil

Mark Roberts
U.S. Naval Research Laboratory
Washington, DC, United States
mark.roberts@nrl.navy.mil

Laura M. Hiatt
U.S. Naval Research Laboratory
Washington, DC, United States

laura.hiatt@nrl.navy.mil

ABSTRACT
End-user programming (EUP) tools must balance user control with
the robot’s ability to plan and act autonomously. Many existing
task-oriented EUP tools enforce a specific level of control, e.g., by
requiring that users hand-craft detailed sequences of actions, rather
than offering users the flexibility to choose the level of task detail
they wish to express. We thereby created a novel EUP system, Po-
laris, that in contrast to most existing EUP tools, uses goal predicates
as the fundamental building block of programs. Users can thereby
express high-level robot objectives or lower-level checkpoints at
their choosing, while an off-the-shelf task planner fills in any re-
maining program detail. To ensure that goal-specified programs
adhere to user expectations of robot behavior, Polaris is equipped
with a Plan Visualizer that exposes the planner’s output to the user
before runtime. In what follows, we describe our design of Polaris
and its evaluation with 32 human participants. Our results support
the Plan Visualizer’s ability to help users craft higher-quality pro-
grams. Furthermore, there are strong associations between user
perception of the robot and Plan Visualizer usage, and evidence
that robot familiarity has a key role in shaping user experience.

CCS CONCEPTS
• Human-centered computing → Systems and tools for inter-
action design; • Computer systems organization → Robotics.

KEYWORDS
human-robot interaction, end-user programming, task planning

ACM Reference Format:
David Porfirio, Mark Roberts, and Laura M. Hiatt. 2024. Goal-Oriented
End-User Programming of Robots. In Proceedings of the 2024 ACM/IEEE
International Conference on Human-Robot Interaction (HRI ’24), March 11–
14, 2024, Boulder, CO, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3610977.3634974

1 INTRODUCTION
As robots permeate our daily lives, there is a growing demand for
efficient and reliable approaches that allow end users to specify
tasks for these robots to perform. End-user programming (EUP)
tools, i.e., software environments that enable these users to cre-
ate and customize robot applications, represent a viable class of

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
HRI ’24, March 11–14, 2024, Boulder, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0322-5/24/03. . . $15.00
https://doi.org/10.1145/3610977.3634974

���������������

�������������

�����
���	��
���������

��������������

����������������
�����	��

�	���������	���
�������	��
��������

Figure 1: With Polaris, end-user programmers specify goal
automata and view the resulting plan in the Plan Visualizer.

solutions. Given the autonomous capabilities of everyday robots,
users should be free to omit certain details from their programs. To
illustrate, consider the following scenario: a caregiver needs a robot
to deliver lunch to a resident in a care facility. Rather than requiring
the caregiver to specify a long string of actions (e.g., go to cafeteria,
pick up tray, go to food station, wait for food, go to resident, and give
food), the caregiver can leverage the robot’s ability to plan and act
autonomously if simply given a desired goal state: lunch delivered.

At the same time, these users must have the flexibility to express
additional detail as needed, based on their own domain expertise.
We define flexibility as being able to choose between low oversight
(expressing minimal goals and letting the robot resolve the details)
and high oversight (specifying more details to constrain the robot).
Caregivers, in particular, can benefit from being able to access dif-
ferent levels of oversight [53]. Perhaps the caregiver in our example
desires higher oversight due to their domain knowledge—the resi-
dent is usually in the recreation area midday, but they must be in
their room to eat lunch due to care facility rules. In this case, there
is an additional implied outcome that the resident should be in their
room before the food is delivered. Constraining the robot with two
goals in sequence will suffice: (1) resident alerted to ensure that the
resident knows to travel to their room, and then (2) lunch delivered.

Unfortunately, there has been limited exploration of EUP tools
that leverage robot autonomy while still affording users flexibility
in program specification. Most existing EUP tools necessitate high
oversight by requiring users to hard-code robot actions, which as
evidenced by existing datasets of user-generated action sequences,
exhibits high contextual conformity [36]. In this work, we challenge
the action-oriented EUP paradigm for human-robot interaction
(HRI) by proposing goal predicates as an alternative fundamental
building block of robot programs. By selecting and parameterizing
goal predicates, users can omit details on how an intended effect
(i.e., “goal state,” or “goal” for brevity) is achieved. Furthermore, in

https://orcid.org/0000-0001-5383-3266
https://orcid.org/0000-0003-2690-7658
https://orcid.org/0000-0001-5254-2846
https://doi.org/10.1145/3610977.3634974
https://doi.org/10.1145/3610977.3634974
https://doi.org/10.1145/3610977.3634974

HRI ’24, March 11–14, 2024, Boulder, CO, USA David Porfirio, Mark Roberts, & Laura M. Hiatt

Front-End AI Interface User
Goal Preds Planning Domain Feedback Study

Polaris ✓ ✓ Service ✓ ✓
“Spbd” [9] ✓ Nav. ✓
JESSIE [33] Social ✓
Tabula [42] ✓ Service ✓
RoVer [41] Social ✓ ✓

RoboFlow [3] Service ✓

Table 1: A comparison of Polaris to closely related EUP tools.
Polaris exposes goal predicates to users, explicitly incorpo-
rates AI planning techniques, provides visual feedback on
user programs through its interface, and is user-evaluated.

recognizing that goals do not contain explicit information about
which actions the robot will perform, we ask how goal-oriented EUP
tools can ensure that user expectations match robot performance.

To address these gaps, we created a goal-oriented EUP system,
Polaris, that represents our vision of flexibility, abstracting away
unnecessary detail while still affording users appropriate control
over the robot. Figure 1 depicts the high-level usage flow of Polaris,
which exists as a handheld tablet interface. With Polaris, end users
specify goal automata—a flow-based representation in which nodes
in the flow represent goals rather than actions. This enables end-
user programmers to specify programs at a level of detail withwhich
they are comfortable or that is required by their domain expertise.
Polaris then automatically generates a branching task plan through
off-the-shelf AI planning approaches. To ensure that plans match
developer intent and to provide feedback for refinement, Polaris
includes a Plan Visualizer interface that exposes the plan to users.

The Polaris system represents an ongoing research effort. This
paper describes a snapshot of this effort, culminating in Polaris
V1.0, and highlights our motivations and initial design decisions.
Our evaluation tests these design decisions, finds evidence that
the Plan Visualizer improves plan quality, and uncovers associa-
tions between user experience and both Plan Visualizer usage and
self-reported robot familiarity. We conclude by offering design im-
plications and discussing how these implications inform our own
future work and future development of EUP systems in general.

Our contributions include: Systems — the Polaris system, a novel
goal-oriented EUP tool and our primary contribution. Empirical
— an evaluation of Polaris, namely the Plan Visualizer’s ability to
assist end-user programmers with creating goal-oriented programs.
Design — design implications that emerged from our evaluation.

2 RELATEDWORK
Polaris’ contributions and novelty are situated within end-user pro-
gramming and draw heavily from goal-oriented task specification
and automated planning in HRI.

2.1 Robot End-User Programming
End-user programming pertains to the creation of software appli-
cations by the application users themselves [7]. Contributions in
robot EUP often focus on novel ways to capture user intent through
visual programming environments [e.g., 34, 50], augmented reality
[e.g., 12, 13], natural language [e.g., 20, 23], or multimodal input [e.g.,

8, 43], to name a few examples. In HRI, end-user programmers1 are
typically (though not always) programming novices, and may also
be domain experts specialized in specific fields [2]. Polaris’ target
end-user programmer includes domain experts in need of person-
alized (e.g., through goal-oriented specification) yet reliable (e.g.,
through the Plan Visualizer) robot execution, such as caregivers,
military personnel, and disaster response teams.

Polaris’ contribution lies primarily in its goal-oriented program-
ming paradigm—users specify an intended effect in terms of goal
state rather than an action-oriented description of robot behaviors
to achieve that effect. Overwhelmingly, existing EUP systems for
HRI are action-oriented. Action-oriented examples from the EUP
literature include block-based [e.g., 16, 28, 29, 50], flow-based [e.g.,
3, 44], and event-based [e.g., 34] tools, in which the fundamental
building block of a robot application is an action or command.

Table 1 characterizes Polaris’ novelty against a representative
selection of similar, existing EUP systems and programming ap-
proaches. Notably, Brageul et al. [9]’s simple programming by demon-
stration (“spbd”) interface is similar to Polaris’ goal-oriented nature
in that it allows users to directly manipulate goal predicates. Unlike
Polaris, however, spbd is limited to navigation domains and lacks
a user study. Another tool, JESSIE, similarly captures goal state
within its program logic, but this logic is not exposed to the user
[33]. Polaris additionally distinguishes itself from prior work that
views goals as high-level task commands (e.g.,“open a sliding door”
as a goal in [1]) due to our strict definition of goals as expressing
desired state rather than any information about the robot’s actions.

Goal-oriented nature aside, Polaris draws heavily from other
prior work. Tabula, in particular, exists within a handheld tablet,
invokes a planner to determine robot behavior, and offers plan feed-
back through its user interface [42]. Tabula, however, only exposes
actions to users and is not yet evaluated in a user study. Although
not incorporating a planner, both RoVer [41] and RoboFlow [3] af-
ford users a similar flow-based specification interface to Polaris and
check pre and postconditions between consecutive robot actions.
RoVer is additionally similar to Polaris in its user interface, namely
through the inclusion of a dedicated feedback pane.

2.2 Goal-Oriented Specification Paradigm
Goals are a critical component of many formal representations,
architectures, and models for autonomous agents. The belief-desire-
intention (BDI) paradigm presents one such modeling approach
for agent reasoning [10] and has led to numerous agent-oriented
programming languages, including AgentSpeak [46] and variants
of CAN [47], of which goals are of great importance. Goals are
additionally critical to the specification of both classical and hierar-
chical planning problems [22, 51]. For expressing robot programs
purely via goals, Polaris utilizes an approach most similar to Agent
Planning Programs [18], in which programs are represented as tran-
sition systems with transitions between program states labeled by
goals and guard functions.

Prior work demonstrates how goal-oriented languages improve
user outcomes. In particular, Hu et al. [27] shows how decompos-
ing a task into higher-level objectives (“goals”) combined with
block-based programming can improve learning outcomes among

1We often refer to end-user programmers as simply “end users” or “users” for brevity.

Goal-Oriented End-User Programming of Robots HRI ’24, March 11–14, 2024, Boulder, CO, USA

students. Additionally, Cox and Zhang [17] contrast two mixed-
initiative planning approaches, goal manipulation versus search (i.e.,
searching through action pre and postconditions), and find that
goal manipulation surpasses search in terms of user performance
and efficiency. These results support our design choice to expose
goals to users through Polaris.

Although less common in robot EUP, goal-oriented specification
is popular in related fields. Prior work within the Internet of Things
(IoT), in particular, has produced numerous EUP tools, languages,
and architectures for specifying smart home configurations in terms
of predicates (e.g., temperature is 𝑥 , in which 𝑥 is a value in degrees)
[32, 38]. An underlying motivation of goal-oriented specification
in IoT is to reduce development time [39].

2.3 Automated Planning in HRI
Planning and acting involves selecting what an agent does and
how it does it [22]. The scope of our work is on the former—what.
Within this scope, automated planning solves for plans with respect
to a planning domain, that is, constraints which are often speci-
fied in languages such as the Planning Domain Definition Language
(PDDL) [21] or the Action Notation Modeling Language (ANML)
[52]. Notable planning work in HRI involves reasoning about and
responding to human behavior [4, 30, 40] and creating robot plan-
ning domains through demonstration [35]. Recently, Chakraborti
et al. [15] investigated the use of plan explanations to improve the
shared understanding of a robot’s decisions.

Various interfaces exist for visualizing and enabling end users to
interact with plans, PDSim being a notable example in robotics [19].
Of the existing planning interfaces in HRI, Tabula is most similar to
Polaris but is action-oriented and focuses more on the mechanism
for capturing the intent of end-user programmers [42]. A plethora
of other such interfaces (e.g., RADAR-X [55]) exist outside of HRI.

3 SYSTEM DESIGN
Our description of Polaris begins by elaborating on the caregiving
scenario presented in Introduction (§1) to illustrate the user’s per-
spective, followed by our technical approach for (1) specifying task
objectives in terms of goals, (2) generating a task plan, (3) viewing
the plan, (4) running the plan, and (5) Polaris’ implementation.

3.1 User Perspective
Figure 2 depicts the user’s perspective of Polaris with its various
components described below.
World. The user begins by requesting a two-dimensional map of the
environment from the robot and uploading semantic labels for key
entities that the robot can recognize. The semantically labeled map
(accessible though the Plan Visualizer , Figure 2b) depicts the world
that the robot operates within, and includes the two-dimensional
representation of the robot’s environment and the entities therein.
There are five general categories of entities—objects, containers,
surfaces, regions, and people. Objects include anything that the
robot can grab. Containers include anything within which an object
can be placed. Surfaces are areas upon which objects can be placed
and are non-traversable by the robot. Regions are traversable areas
in the environment. People include the robot’s potential interaction
partners. Within the world, the locations of objects and people

represent initial positions, and these entities can be moved around
throughout the course of a program’s execution.

Figure 2b depicts the world within our caregiving scenario. The
care facility has been labeled with regions such as the recreation
area, the resident’s room, and the cafeteria. The robot can place
items onto and remove items from surfaces such as the empty trays
surface and the resident’s table. The tray is a manipulable object
and the resident is an interactable person in the environment.
Creating a Goal Automaton. The user enters the Drawing Board
to specify a program in terms of goals. Figure 2a depicts theDrawing
Board with an example user-based solution, called a goal automaton.
In the goal automaton, blue nodes represent checkpoints. Check-
points contain goals, thereby indicating the state of the world that
the user wants the robot to achieve at that point in the program.
Connecting checkpoints with lines (called transitions) enforces an
ordering and allows users to specify a conditional, or world state
that must be true (possibly outside of the robot’s control) for the
robot to proceed from one checkpoint to another. Checkpoints
contain no indication of the robot’s geographical location and are
purely intended to represent program flow.

Figure 2a1−4 shows the process of building the goal automaton to
represent the caregiver’s objectives. The resident must be informed
of lunchtime before lunch is served, so the caregiver’s first step
(Figure 2𝑎1) is to draw a new checkpoint and label it alerted. When
a new checkpoint is created, a parameterization menu appears that
prompts users to add goals to the checkpoint. Users may also click
on existing checkpoints during the course of goal automata creation
to modify these checkpoints’ goals. Within alerted, the caregiver
assigns 𝑥 and 𝑦 values to the “x–alertedTo–y” predicate to create
a ground predicate and assert a goal: The resident has been alerted
to lunch being served, namely (resident–alertedTo–lunchtime).2

Next (Figure 2𝑎2), the caregiver draws a line from alerted to
a new checkpoint, fetched, and inserts goals (tray–at–table) and
(tray–is full), indicating that after alerting the resident, lunch must
be delivered. The caregiver labels the transition from alerted to
fetched with the ground predicate (acknowledged–lunchalert), in
this case indicating a conditional that the robot can only proceed
from the alerted checkpoint to the fetched checkpoint if the resident
acknowledges the alert. Throughout the course of goal automata
creation, the user may click on existing transitions to modify the
transitions’ conditionals. In order to handle the edge case in which
the robot’s lunchtime alert is dismissed (e.g., if another caregiver has
already served the resident lunch and wishes to cancel the robot’s
task), the next step taken by the caregiver (Figure 2𝑎3) is to draw
a transition from alerted to a new checkpoint, cancelled, assign a
goal of (robotAt–home), and label the new transition with the con-
ditional dismissed. Finally (Figure 2𝑎4), the caregiver draws a new
checkpoint from fetched called home and adds another (robotAt–
home) goal. More information on the semantics of goal automata
can be found in Representing Goal Automata (§3.2).
Viewing andRunning a Plan.As the usermakes progress on their
goal automaton, Polaris computes a task plan behind the scenes,
which contains the exact actions that the robot plans to take to
achieve each of the caregiver’s goals in sequence. Polaris presents
this information to users via the Plan Visualizer interface (Figure 2b).

2Our goal notation parenthesizes bolded predicate symbols and italicized terms.

HRI ’24, March 11–14, 2024, Boulder, CO, USA David Porfirio, Mark Roberts, & Laura M. Hiatt

move to
resident

1
alert
resident to
lunch_alert

2
received
response from
resident

3
If:
acknowledged
lunch_alert

move to
tray

4
grab
tray from
empty_trays

5
move_to
food_station

6
request
food

7
move to
table

8
put
tray onto table

 9
move to
home

10

�� �������������� �����������������������

��������������
�������

�
��	����������������

��������
��������

������������������

������������

����������������

���������������� ������������������

������������
���
�������������������������
������������
������

�������������������������
�����������
������

�����
��������
���������������������

Figure 2: The Polaris user interface, which includes (a) the Drawing Board for specifying goal automata and (b) the Plan
Visualizer for displaying the robot’s plan. (c) A single branch of the branching plan from the caregiving scenario is displayed.

Figure 2c depicts the plan based on the caregiver’s goal automaton
as it is presented to the user. At any point during goal automaton
creation, the user can flip back and forth between the Drawing
Board and Plan Visualizer to iterate on receiving plan feedback
and performing modifications to their goal automaton. Once the
user presses the play button (Figure 2b, bottom right), the robot
begins to execute the plan. Branching plan creation, viewing, and
execution are detailed further in Creating a Branching Plan (§3.3),
Viewing the Branching Plan (§3.4), and Plan Execution (§3.5).

3.2 Representing Goal Automata
Formally, a goal automaton is a transition system [6] that guides
the robot in achieving goals during its task and is represented by
the tuple (𝑃 , 𝐶 , 𝐿𝑐 , −→, 𝑐0):
Predicates. 𝑃 is a set of ground predicates, i.e., predicates with
assigned variable values. Predicates primarily represent goals,
but can also represent conditionals, namely world state that must
be true for the robot to proceed. Intuitively, conditionals indicate
that the robot must wait for a particular outcome that may be
out of the robot’s control.
Checkpoints. 𝐶 is a set of checkpoints. Intuitively, checkpoints
represent points in the program in which the robot has achieved
a desired set of goals 𝑝 ∈ 2𝑃 , in which 2𝑃 is the power set of 𝑃 .

Goals. 𝐿𝑐 : 𝐶 → 2𝑃 maps checkpoints to goals.

Transitions. −→⊆ 𝐶 × 2𝑃 ×𝐶 is the transition relation between
checkpoints subject to a conditional being true. For example,
𝑝 ∈ 2𝑃 is a conditional within the transition 𝑐𝑖

𝑝−→ 𝑐 𝑗 . Intuitively,
a transition labeled with conditional 𝑝 means, “wait for 𝑝 to be
true before transitioning between 𝑐𝑖 and 𝑐 𝑗 .” A transition with
no conditional annotation (e.g., 𝑐𝑖 −→ 𝑐 𝑗) means “transition from
𝑐𝑖 to 𝑐 𝑗 if no other transitions from 𝑐𝑖 are able to be taken.”

Initial Checkpoint. 𝑐0 is the always-empty “start” checkpoint.
𝑐0 represents initial state and does not have goals: 𝐿𝑐 (𝑐0) = ∅.
Figure 2a depicts the interface for specifying goal automata, the

Drawing Board. Initially, the Drawing Board contains the empty
checkpoint 𝑐0. Each new checkpoint 𝑐 𝑗 must be drawn as 𝑐𝑖 −→ 𝑐 𝑗
such that 𝑐𝑖 ∈ 𝐶 (i.e., new checkpoints must connect to existing
checkpoints), 𝐿𝑐 (𝑐 𝑗) = ∅ (i.e., new checkpoints initially contain no
goals), and new transitions initially contain no conditionals. While
the intention is to support loops in future versions of Polaris, goal
automata are presently drawn as trees.

3.3 Creating a Branching Plan
Branching plans are compiled in real-time as changes are made
to the goal automaton, provided that there are no underspecified
transitions (i.e., two transitions with the same conditional extending
from the same checkpoint). If a checkpoint in the goal automaton
contains conflicting goals (e.g., the user asserts that a single-arm
robot must hold two items at the same time), Polaris will omit that
checkpoint and further checkpoints in its subtree from compilation.

Formally, a branching plan is similar in tree structure to the goal
automaton but consists of actions rather than goals. Let 𝐴 be the
set of tree nodes in the plan and 𝐿𝑎 : 𝐴 → 2𝑃 be the world state
after a node’s action has been executed. Let −→⊆ 𝐴 × 2𝑃 × 𝐴 be
the transition relation between nodes. Given a goal automaton,
Polaris creates a branching plan such that there is an injective
non-surjective mapping between checkpoints and plan nodes 𝑓𝑚 :
𝐶 → 𝐴. For convenience, let 𝑓𝑠 : 𝐴 → 2𝐴 map node 𝑎𝑖 to the set of
nodes in 𝑎𝑖 ’s subtree. Subject to the following additional constraints,
Polaris leverages an off-the-shelf planner for plan creation.

Constraint on Transitions—For each transition 𝑐𝑖
𝑝−→ 𝑐 𝑗 in the tree-

like goal automaton, there must be a corresponding transition in the

Goal-Oriented End-User Programming of Robots HRI ’24, March 11–14, 2024, Boulder, CO, USA

(resident-alerted to-lunchtime) (tray-at-table)
(tray-is full)

(robot-at-home)

start
alerted

fetched home

cancelled

conditional: acknowledged

conditional: dismissed

dismissed
acknowledged

LC(fetched) ⊆ La(a9)

a9

fetched maps to
action a9

�nal state of a9
satisfies fetched

fm(fetched) = a9

alerted fetched

a3

a4

a3 a4

acknowledged

fm(fetched) ∈ fs(a4)
a9 must be in subtree of a4

����
���������

���������
����

a1 a2

go to
resident

alert
resident

receive
response

go to
tray

grab
tray

go to
food

receive
food

go to
table

go
home

go home

a5 a6 a7 a8 a10

a11

acknowledged

put
tray

down

(robot-at-home)

Figure 3: Computing branching plans from goal automata.

branching plan 𝑎𝑖
𝑝−→ 𝑎 𝑗 such that 𝑓𝑚 (𝑐𝑖) = 𝑎𝑖 and 𝑓𝑚 (𝑐 𝑗) ∈ 𝑓𝑠 (𝑎 𝑗),

that is, 𝑐𝑖 maps to 𝑎𝑖 and the mapping of 𝑐 𝑗 is in the subtree of 𝑎 𝑗 .
Figure 3 illustrates this constraint—the transition between alerted
and fetched maps to the transition between 𝑎3 and 𝑎4, and fetched
maps to a descendent of 𝑎4.

Constraint on Goal Achievement—A checkpoint’s goals must match
the state of the world after the completion of its corresponding
action in the branching plan: 𝐿𝑐 (𝑐) ⊆ 𝐿𝑎 (𝑓𝑚 (𝑐)). Figure 3 illustrates
this constraint: The goals of fetched match the end effect of its
corresponding action in the plan, 𝑎9.

3.4 Viewing the Branching Plan
At any point during the creation of a goal automaton, end users
may view the branching plan computed by Polaris within the Plan
Visualizer interface. The Plan Visualizer draws from existing “time-
line” interfaces in HRI [48, 49] in that it displays one branch of the
plan at a time from left to right, and within a horizontal scrollable
pane overlaying the semantically labeled map. Initially, the plan
is displayed up to when a conditional is encountered. Users then
select the conditional corresponding to the branch they wish to
visualize via a dropdown menu. Following the user’s selection, the
Plan Visualizer displays the corresponding branch up to the next
conditional. Actions within each branch can be clicked to depict
the world state that results from the execution of the clicked action.

3.5 Plan Execution
When the user is satisfied with their goal automaton and resulting
plan, theymay execute the plan on the robot. During plan execution,
Polaris enters a feedback-execution loop with the robot. Rather than
sending the robot actions directly from the plan, Polaris converts
actions to goals (i.e., by using the end effects of an action). This
enables the robot to compute a new plan to achieve the end effect
of each action, rendering the robot flexible to minor perturbations
in the environment. The robot is thereby able to re-plan when its
perceived state of the world changes and repeat this process until
the goal-converted action has been achieved. The robot then sends

a confirmation back to Polaris, which converts the next action in
the plan to a goal and sends the new goal to the robot.

3.6 Implementation
Polaris exists within a front-end tablet and a back-end planner
communicating over a RESTful API. The front end is implemented
in Unity version 2022.2.1f1 [54] and is compiled to Android. While
Polaris is primarily intended for handheld use, its implementation
in Unity has enabled us to deploy it on a web browser and as a
desktop application.

The Polaris back end is implemented within Python 3.8 and
accesses a planning domain expressed in PDDL [21].3 At a high
level, the planning domain consists of (1) a set of predicates that
operate over both the robot’s state and entities in the world, and (2)
a set of operations that the robot can perform, including how these
operations affect both the robot and the world. We integrated an
off-the-shelf planner, Fast Downward [25, 26], within the back end.

We use the Hello Robot Stretch RE2 robot [31] as our runtime
platform. Communication between Polaris and the robot occurs
through the Noetic version of the Robot Operating System [45].

4 SYSTEM EVALUATION
To evaluate our systems-level contribution and understand the in-
teraction between the core components of the system, we conducted
an IRB-approved laboratory study that compares the full version of
Polaris with an ablated baseline without the Plan Visualizer . Our
hypotheses are that exposure to the Plan Visualizer improves the
quality of the resulting plans (H1), helps match user expectations to
robot task performance (H2), improves the perceived competence
of the robot (H3), and improves Polaris’ usability (H4).

4.1 Study Design
We conducted an experiment with two conditions—plan-vis, in
which participants were exposed and allowed access to Polaris’ Plan
Visualizer , and no-vis, in which participants were neither exposed
nor allowed access to the Plan Visualizer . Participants specified a
goal automaton and executed the resulting plan on a robot.

4.1.1 Study Scenario. Our evaluation centered on a tidying sce-
nario. Participants were informed the following:

You are finished hosting a dinner for some friends, and now it
is time to clean up. While you wash dishes in the kitchen, you
want your robot to help deliver dirty dishes to you and deliver
clean dishes to the cupboard.
Figure 4 (right) depicts the physical layout of the study. Partici-

pants were informed that their job was to wash a dirty plate and
cup. Participants were also informed of the robot’s capabilities—it
can deliver dishes to and from the participant’s vicinity and open
the cupboard. Participants were not allowed to step out from behind
the countertop (see participant reachable area in Figure 4, right).

Participants were informed that to clean a dish, they needed to
access the dish (presumably by having the robot deliver the dish
to their vicinity) and place the dish on the drying rack. Once on
the drying rack, the dish is clean and ready to be put away. The

3Planning domains are interchangeable within Polaris. Example planning domains can
be found at https://osf.io/ewfd5/.

https://osf.io/ewfd5/

HRI ’24, March 11–14, 2024, Boulder, CO, USA David Porfirio, Mark Roberts, & Laura M. Hiatt

conditional:
(cup-at-drying rack)

(plate-at-drying rack)

(cup-at-countertop)
(plate-at-countertop)

(cup-at-cupboard)
(plate-at-cupboard)

start

atPerson atCupboard

Robot: Grab Objects Robot: Deliver Objects Person: Clean Objects Robot: Dropo� Objects

cup start
location

plate start
location

cupboard
(initially closed)

drying rack

countertop
(with sink)

participant
reachable area

robot traversable space

robot

participant

dining room
table

Physical Layout of StudyExample User-Based Solution and Robot Execution

Robot Execution

User-Based Solution

Figure 4: The smallest solution to the tidying scenario and its execution (left). The physical layout of the study room (right).

smallest solution for the tidying scenario is depicted in Figure 4
(left). On execution of this solution, the robot delivers the dishes to
the countertop, waits until the dishes are on the drying rack, then
opens the cupboard, and finally moves the dishes to the cupboard.

4.1.2 Measures. To measure plan quality, we first enumerate four
basic objectives of the tidying scenario—(1) cup clean, (2) plate
clean, (3) clean cup in the cupboard, and (4) clean plate in the
cupboard. Giving each objective equal weight, we then compute
(1) a runtime score, or how many objectives the robot meets during
plan execution; and (2) a feasibility score, or the maximum number
of objectives that the robot could meet at runtime. The runtime
score may be lower than the feasibility score if the participant
acts suboptimally at runtime, e.g., if the participant removes the
cup and plate from the drying rack before the robot has had the
chance to grab them. Higher values are better for runtime and
feasibility scores. We additionally created (3) a third and more fine-
grained analysis of task quality—human effort. Given a participant’s
task plan, the measure asks: What is the minimum number of
independent actions that a humanwould have to perform during the
robot’s execution for all four objectives in the task to be achieved?
To compute this measure, we relax the assumption that participants
stay behind the countertop. Lower values of human effort are better.

Wemeasure usability via the SUS questionnaire (10 items, 5-point
Likert scale) [11] and the usefulness (8 items), ease of learning (4
items), and satisfaction (7 items) factors of the USE questionnaire (7-
point Likert scale) [37]. Tomeasure perceived robot competence, we
include the competence factor of the RoSAS scale (6 items, 7-point
Likert scale) [14]. We developed our own expectations questionnaire
to measure the degree to which expectations of robot performance
are matched in terms of four factors (5 items each, 7-point Likert
scale)—expectations overall (Cronbach’s 𝛼 = 0.80), expectations
of what the robot did (Cronbach’s 𝛼 =0.78), and expectations of
where (Cronbach’s 𝛼 = 0.91) and why (Cronbach’s 𝛼 = 0.87) it did
it. Although not part of our hypotheses, we measured task load
through the NASA TLX (7 items, 7-point Likert scale) [24].4

4.1.3 Procedure. Study sessions lasted for one hour. After giving
their consent to participate, participants completed a self-guided

4Copies of the study materials can be found at https://osf.io/ewfd5/.

browser-based Polaris tutorial. Participants were encouraged to
ask questions at this stage, to which the experimenter responded
within the scope of the tutorial. Plan-vis participants were exposed
to the Plan Visualizer through an additional tutorial step.

After the tutorial, participants were briefed on the tidying sce-
nario and given 10 minutes to specify a goal automaton within
Polaris. Within the 10 minutes, plan-vis participants had unlimited
access to the Plan Visualizer at their discretion. After 10 minutes or
when participants indicated that they had finished, we administered
the TLX, USE, and SUS questionnaires.

Participants were then given instructions for executing their
plans on the robot. Figure 4 (left) depicts a sample execution. During
execution, participants observed the status of the robot on the tablet.
If the robot encountered a conditional, it waited for confirmation
from the participant before proceeding. Participants were informed
that they could move any items around in their vicinity, e.g., to or
from the countertop and the drying rack.

During execution, deviations from the robot’s expected world
state were engineered to cause the robot to prematurely halt execu-
tion. Deviations could occur, for example, if the participant failed to
specify in their goal automaton that clean dishes would be placed
on the drying rack (i.e., by failing to insert a conditional that in-
structs the robot to wait until the dishes are on the drying rack
before proceeding to put them in the cupboard). In this case, the
robot would believe the dish to be on the countertop, but without
seeing the dish on the countertop, it would be unable to proceed.
Participants would be given a few seconds to realize their mistake
and put the clean dish back on the countertop, but if deviations
remained uncorrected, the robot halted execution.

At the end of execution, participants filled out the questionnaires
for expectations matched and perceived competence. To adhere to
the one-hour time limit, one participant was administered these
questionnaires prior to when the robot had finished execution. If
time permitted, participants underwent semi-structured interviews.
Interview durations varied based on the remaining time in the hour.

4.2 Results
Participants. We recruited 33 volunteers (19 male, 14 female)

from within the U.S. Naval Research Laboratory in Washington,

https://osf.io/ewfd5/

Goal-Oriented End-User Programming of Robots HRI ’24, March 11–14, 2024, Boulder, CO, USA

�

�

�

�

� �������

�����������

�

��

��

��

��

��� ���������������

�

�

�

�

�

�

� ���������������

�

�

�

�

�

�

� ���� �
��	��������

�����������������

���	��� ����

���� ���

����� ����������

�

�

�

�

�

�

� �����

� � � � � � �

����������

�����
���

��������������������

��������� ����������

�

�

�

�

�

�

�

� � � � � � � � � � � � � �

�

�
	

�

�
	

����� ����������

������
��������

�

�

�

�

�

�

�

� � � � � � � � � � � � � �

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
��������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	�

��������������
��������������

��������������
��������������

��������������
���������������

�

�

�

�

�
�
�
�
�
�
�
��
��
��

��������������
��������������

��������������
��������������

� � � � � � �

�

Figure 5: Plan quality (top left), usability (top right), compe-
tence and task load (bottom left), and expectations matched
(bottom right) plotted against robot familiarity. Linear trend-
lines indicate the direction of the relationship. Blue is plan-
vis. Grey is no-vis. Lower is better only for human effort and
task load. Error bars represent standard error.

D.C. We discarded one participant’s data (plan-vis) due to a rare but
experience-altering software bug. Of the remaining 32 participants
(17 plan-vis, 15 no-vis), the average age was 30.7 years (𝑆𝐷 = 11.7)
and the average self-reported familiarity with robots was 4.09 (𝑆𝐷 =

1.89) on a seven-point, single-item Likert scale (low=1, high=7). Six
participants reported participating in past robotics studies.

Within our sample, 14 participants (8 plan-vis, 6 no-vis) produced
plans that were either correct or nearly correct (feasibility score of
3-4). Two participants (1 plan-vis, 1 no-vis) created goal automata
that failed to compile. An additional three participants (1 plan-vis, 2
no-vis) experienced equipment failure at the time of plan execution.
Due to these five participants not executing their plans on the robot,
our post-execution measures (competence, expectations matched,
and runtime score) include 27 participants in total.

Hypothesis Testing. We performed one-tailed Mann-Whitney U
tests to compare plan quality and one-tailed Student’s t-tests to

Correlation with Correlation with
Robot Familiarity Plan Visualizer Usage

Measure Spearman’s 𝑟 𝑝 Spearman’s 𝑟 𝑝

Runtime score 0.556 <0.01 0.468 0.079
Feasibility score 0.445 0.011 0.387 0.125
Hum. effort cost -0.460 <0.01 -0.377 0.136
Expect. overall 0.398 0.040 0.831 <0.001
Expect. what 0.422 0.028 0.737 <0.01
Expect. when 0.484 0.011 0.784 <0.001
Expect. why 0.371 0.057 0.614 0.015
Competence 0.066 0.745 0.051 0.857

Usability (SUS) 0.568 <0.001 0.496 0.043
Usefulness 0.398 0.024 0.433 0.083

Ease of Learn. 0.639 <0.001 0.453 0.068
Satisfaction 0.390 0.027 0.226 0.383
Task Load -0.399 0.024 -0.092 0.724

Table 2: Spearman’s rank coefficient with robot familiarity
(all data) and Plan Visualizer usage (plan-vis only) for each
measure. Bold indicates statistical significance (𝑝 < 0.05).

compare usability, competence, and expectations matched between
conditions. We observed a significant difference in plan quality in
terms of human effort between the plan-vis and no-vis conditions
(𝑈 = 182.5, 𝑝 = 0.017). We observed marginal effects (𝑝 < 0.1) for
plan-vis performing better than no-vis participants for our measures
of perceived usefulness of Polaris (𝑝 = 0.097, 𝑡 (30) = 1.33), satisfac-
tion with Polaris (𝑝 = 0.081, 𝑡 (30) = 1.43), perceived competence
of the robot (𝑝 = 0.083, 𝑡 (25) = 1.43), and expectations matched
both overall (𝑝 = 0.082, 𝑡 (25) = 1.43) and for why the robot acted
(𝑝 = 0.095, 𝑡 (25) = 1.35). Additionally, plan-vis participants re-
ported SUS scores of 67.35 (𝑆𝐷 = 19.99), whereas no-vis participants
reported SUS scores of 59.00 (𝑆𝐷 = 20.68). In the other measures
that we compared, the plan-vis condition generally performed bet-
ter on average than the no-vis condition within our sample (Figure
5). Average values for each measure under both conditions can
be found in Figure 5. These results support the Plan Visualizer in
increasing overall plan quality, but further investigation is required
before accepting our hypotheses.

Robot Familiarity. We additionally analyzed each of ourmeasures
for associations with self-reported robot familiarity. Table 2 (left)
shows the resulting Spearman’s rank correlations, and Figure 5
visualizes these associations for each condition. It can be seen that as
robot familiarity increases, plan quality, usability, and expectations
matched also increase, while task load decreases. These correlations
suggest that end-user programmers’ past familiarity with robots
may impact almost every interaction that they have with Polaris.
Our manipulation may be competing with robot familiarity.

Plan Visualizer Usage. We grouped plan-vis participants (referred
to as PX, with X being a unique identifier) into various categories
based on how they used the Plan Visualizer . We categorized eight
participants (P2, P5, P6, P7, P22, P25, P27, and P29) as “intended use.”
These participants appeared to use the Plan Visualizer to validate
their work or guide them in fixing errors and produced plans of high
quality (feasibility score mean of 3.625 out of 4). We categorized
an additional two participants (P16 and P30) as “unsuccessful use”

HRI ’24, March 11–14, 2024, Boulder, CO, USA David Porfirio, Mark Roberts, & Laura M. Hiatt

due to heavy reliance on the Plan Visualizer but an inability to
fix errors in their goal automata (feasibility score mean of 0.5 out
of 4). Four more participants (P4, P9, P13, and P21) fall into the
“no-use” category due to not accessing the Plan Visualizer at all
or accessing it but not interacting with it (e.g., by not scrolling
through or clicking on actions in the plan). No-use participants
produced plans of low quality (feasibility score mean of 0.75 out of
4). We grouped the remaining three participants into a category of
“unknown use,” for whom the role of the Plan Visualizer is unclear
(feasibility score mean of 0.66 out of 4).

Within the plan-vis condition, there are strong positive associa-
tions between Plan Visualizer usage (equal to how many times a
participant accessed the Plan Visualizer , and while accessing it, in-
teracted with the Plan Visualizer as well) and expectations matched.
Table 2 (right) depicts these correlations.

5 DISCUSSION
In our experiment, we found evidence that the Plan Visualizer in-
creases plan quality and marginal effects for the Plan Visualizer
increasing satisfaction, expectations matched, perceived usefulness
of Polaris, and perceived competence of the robot. On average, the
plan-vis condition generally performed better than the no-vis con-
dition. We find these results encouraging, but further investigation
is required to fully understand the Plan Visualizer’s effectiveness,
and more generally, Polaris overall. To guide our further investiga-
tion and provide guidance to future research within the wider EUP
community, we propose three design implications.

Design Implication: Feedback is critical for goal-oriented EUP.
This implication is evidenced by the significant and marginal effects
of the Plan Visualizer despite its underuse by “no use” and “unknown
use” users. There also exists a strong positive association between
Plan Visualizer usage and both expectations matched and usability.
Although this association is not causal, we believe that improving
Plan Visualizer access would have increased our observed effect.
The importance of feedback and how information is presented to
users is further supported by prior work [5, 41]. Recommendation:
Feedback should be provided proactively (rather than passively) by
goal-oriented EUP tools. Polaris users should be exposed to feedback
as soon as changes to their programs occur, which could result in
higher expectations matched for “no use” and “unknown use” users.

Design Implication: Although goal-oriented programming al-
lows for greater flexibility in theory (see §1) and has shown benefit in
prior work [17, 27], users’ ability to leverage this flexibility in prac-
tice should not be presumed. As evidence of this implication, less
than half of the participants in either condition produced correct
or nearly correct plans. Participant interviews reveal a potential
explanation: Goal predicates are difficult to reason about and re-
quire a shift in thinking from a potentially more intuitive (albeit
less flexible) action-oriented paradigm (P9, P17, P19). Recommen-
dation: EUP researchers must investigate user-interface techniques
that improve user comprehension of goal-oriented programming. Cru-
cially, EUP researchers should avoid assuming that current interface
norms for EUP seamlessly translate to the goal-oriented paradigm.

Design Implication: Robot familiarity strongly predicts percep-
tions and use of robot EUP tools. As evidence of this implication,

our evaluation uncovers significant correlations between robot fa-
miliarity and usability, expectations matched, plan quality, and task
load. We note that our study population is critical to uncovering
this finding—our sample includes both professionals and students
at both ends of the spectrum of robot familiarity. At the same time,
the observed effects of our manipulation are potentially diluted
due to the breadth of our study population. Recommendation:
EUP researchers for human-robot interaction need to choose their
study population more carefully and deliberately than is often done
in current practice. Robot familiarity should factor into this choice.

Limitations and Future Work. Polaris’ design poses various op-
portunities for improvement. Most notably, users need assistance
creating “correct” plans (i.e., plans with high feasibility scores). Fu-
ture work should thus employ formal methods to help improve plan
feasibility, such as by automatically detecting and fixing contradic-
tory goals. Other limitations include that our planning approach
does not account for uncertainty, such as if the location of an en-
tity in the task context (e.g., a person) is unknown or if there is
an unknown number of multiple items of the same type. Polaris’
inability to support loops or enumeration (e.g., tasking the robot to
deliver food to all rooms in the care facility) further limits the task
contexts within which it can operate. For greater applicability in
the wild, Polaris can also support plan adaptation, e.g., by learning
action costs and re-planning at runtime.

Further limitations exist in our evaluation. Primarily, our study
is systems-level, focusing on the interaction between core com-
ponents rather than exploring the benefit of increased flexibility
from goal-oriented programming. Future component-level testing
is already in preparation to understand the benefit of flexibility
in practice. Additionally, we tested Polaris with just one scenario
and a broad user group and did not collect data about how much
training time is required for Polaris. Although our sample is critical
to revealing significant associations with robot familiarity, future
work must explore Polaris with its target user base, more realis-
tic scenarios, and explore approaches to user training. We believe
that our present study provides an excellent foundation for future
testing, such as by deploying Polaris in situ with actual caregivers.

6 CONCLUSION
We present Polaris, a novel goal-oriented end-user programming
(EUP) system. The purpose of Polaris is to provide flexibility to robot
end users in the level of detail that programs are specified while
ensuring that user expectations match robot performance. Our
evaluation of Polaris uncovers evidence that plan feedback increases
the quality of user-created programs. The evaluation also uncovers
strong associations between plan feedback, robot familiarity, and
participant experience and performance. We conclude with various
design implications for the future development of EUP tools.

ACKNOWLEDGMENTS
This research was supported by the Office of Naval Research and
an NRC Research Associateship award to DP at the U.S. Naval
Research Laboratory. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
U.S. Navy. We thank Greg Trafton for his input on our evaluation.

Goal-Oriented End-User Programming of Robots HRI ’24, March 11–14, 2024, Boulder, CO, USA

REFERENCES
[1] Angeline Aguinaldo, Jacob Bunker, Blake Pollard, Ankit Shukla, Arquimedes

Canedo, Gustavo Quiros, andWilliam Regli. 2022. RoboCat: A Category Theoretic
Framework for Robotic Interoperability Using Goal-Oriented Programming. IEEE
Transactions on Automation Science and Engineering 19, 3 (2022), 2637–2645.
https://doi.org/10.1109/TASE.2021.3094055

[2] Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2021. A Survey
on End-User Robot Programming. Comput. Surveys 54, 8, Article 164 (oct 2021),
36 pages. https://doi.org/10.1145/3466819

[3] Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. 2015. RoboFlow: A
Flow-based Visual Programming Language for Mobile Manipulation Tasks. In
2015 IEEE International Conference on Robotics and Automation (ICRA ’15’). IEEE,
New York, NY, USA, 5537–5544. https://doi.org/10.1109/ICRA.2015.7139973

[4] Samir Alili, Rachid Alami, and Vincent Montreuil. 2009. A Task Planner for an
Autonomous Social Robot. Springer Berlin Heidelberg, Berlin, Heidelberg, 335–344.
https://doi.org/10.1007/978-3-642-00644-9_30

[5] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300233

[6] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT
press, Cambridge, MA, USA.

[7] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Piccinno.
2019. End-user development, end-user programming and end-user software
engineering: A systematic mapping study. Journal of Systems and Software 149
(2019), 101–137. https://doi.org/10.1016/j.jss.2018.11.041

[8] Sara Beschi, Daniela Fogli, and Fabio Tampalini. 2019. CAPIRCI: A Multi-modal
System for Collaborative Robot Programming. In End-User Development (IS-
EUD ’19), Alessio Malizia, Stefano Valtolina, Anders Morch, Alan Serrano, and
Andrew Stratton (Eds.). Springer International Publishing, Cham, 51–66. https:
//doi.org/10.1007/978-3-030-24781-2_4

[9] David Brageul, Slobodan Vukanovic, and Bruce A. MacDonald. 2008. An intuitive
interface for a cognitive programming by demonstration system. In 2008 IEEE
International Conference on Robotics and Automation. IEEE, New York, NY, USA,
3570–3575. https://doi.org/10.1109/ROBOT.2008.4543757

[10] Michael Bratman. 1987. Intention, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA, USA.

[11] John Brooke. 1996. SUS-A ‘quick and dirty’ usability scale. Usability Evaluation
in Industry 189, 194 (1996), 4–7. https://doi.org/10.1201/9781498710411

[12] Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S. Rao, Manav Wadhawan, Ke Huo,
and Karthik Ramani. 2019. GhostAR: A Time-Space Editor for Embodied Author-
ing of Human-Robot Collaborative Task with Augmented Reality. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 521–534. https://doi.org/10.1145/3332165.3347902

[13] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong, Ke Huo, and Karthik
Ramani. 2019. V.Ra: An In-Situ Visual Authoring System for Robot-IoT Task Plan-
ning with Augmented Reality. In Proceedings of the 2019 on Designing Interactive
Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing
Machinery, New York, NY, USA, 1059–1070. https://doi.org/10.1145/3322276.
3322278

[14] ColleenM. Carpinella, Alisa B.Wyman, Michael A. Perez, and Steven J. Stroessner.
2017. The Robotic Social Attributes Scale (RoSAS): Development and Validation.
In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction (Vienna, Austria) (HRI ’17). Association for Computing Machinery,
New York, NY, USA, 254–262. https://doi.org/10.1145/2909824.3020208

[15] Tathagata Chakraborti, Sarath Sreedharan, Sachin Grover, and Subbarao Kamb-
hampati. 2019. Plan Explanations as Model Reconciliation – An Empirical Study.
In Proceedings of the 14th ACM/IEEE International Conference on Human-Robot
Interaction (Daegu, Republic of Korea) (HRI ’19). IEEE Press, New York, NY, USA,
258–266. https://doi.org/10.1109/HRI.2019.8673193

[16] Michael Jae-Yoon Chung, Justin Huang, Leila Takayama, Tessa Lau, and Maya
Cakmak. 2016. Iterative Design of a System for Programming Socially Interactive
Service Robots. In Proceedings of Social Robotics: 8th International Conference (ICSR
2016), Arvin Agah, John-John Cabibihan, Ayanna M. Howard, Miguel A. Salichs,
and Hongsheng He (Eds.). Springer International Publishing, Cham, 919–929.
https://doi.org/10.1007/978-3-319-47437-3_90

[17] Michael T. Cox and Chen Zhang. 2007. Mixed-Initiative Goal Manipulation. AI
Magazine 28, 2 (Jun. 2007), 62. https://doi.org/10.1609/aimag.v28i2.2040

[18] Giuseppe De Giacomo, Alfonso Emilio Gerevini, Fabio Patrizi, Alessandro Saetti,
and Sebastian Sardina. 2016. Agent planning programs. Artificial Intelligence 231
(2016), 64–106. https://doi.org/10.1016/j.artint.2015.10.001

[19] Emanuele De Pellegrin and Ronald P.A. Petrick. 2021. Automated Planning
and Robotics Simulation with PDSim. In Proceedings of the ICAPS Workshop on
Knowledge Engineering for Planning and Scheduling (KEPS).

[20] Maxwell Forbes, Rajesh P. N. Rao, Luke Zettlemoyer, and Maya Cakmak. 2015. Ro-
bot Programming by Demonstration with Situated Spatial Language Understand-
ing. In 2015 IEEE International Conference on Robotics and Automation (ICRA ’15).
IEEE, New York, NY, USA, 2014–2020. https://doi.org/10.1109/ICRA.2015.7139462

[21] Maria Fox and Derek Long. 2003. PDDL2. 1: An Extension to PDDL for Expressing
Temporal Planning Domains. Journal of Artificial Intelligence Research 20 (2003),
61–124. https://doi.org/10.1613/jair.1129

[22] Malik Ghallab, Dana Nau, and Paolo Traverso. 2016. Automated Planning and
Acting. Cambridge University Press, Cambridge, England.

[23] Javi F. Gorostiza and Miguel A. Salichs. 2011. End-user programming of a social
robot by dialog. Robotics and Autonomous Systems 59, 12 (2011), 1102–1114.
https://doi.org/10.1016/j.robot.2011.07.009

[24] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances
in Psychology, Vol. 52. Elsevier B.V., Amsterdam, Netherlands, 139–183. https:
//doi.org/10.1016/S0166-4115(08)62386-9

[25] Malte Helmert. 2006. The Fast Downward Planning System. Journal of Artificial
Intelligence Research 26, 1 (2006), 191–246. https://doi.org/10.1613/jair.1705

[26] Malte Helmert. 2009. Concise Finite-Domain Representations for PDDL Planning
Tasks. Artif. Intell. 173, 5–6 (apr 2009), 503–535. https://doi.org/10.1016/j.artint.
2008.10.013

[27] Minjie Hu, Michael Winikoff, and Stephen Cranefield. 2012. Teaching Novice
Programming Using Goals and Plans in a Visual Notation. In Proceedings of the
Fourteenth Australasian Computing Education Conference - Volume 123 (Melbourne,
Australia) (ACE ’12). Australian Computer Society, Inc., AUS, 43–52. https:
//dl.acm.org/doi/abs/10.5555/2483716.2483722

[28] Justin Huang andMaya Cakmak. 2017. Code3: A System for End-to-End Program-
ming of Mobile Manipulator Robots for Novices and Experts. In Proceedings of
the 2017 ACM/IEEE International Conference on Human-Robot Interaction (Vienna,
Austria) (HRI ’17). Association for Computing Machinery, New York, NY, USA,
453–462. https://doi.org/10.1145/2909824.3020215

[29] Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and Evaluation
of a Rapid Programming System for Service Robots. In The 11th ACM/IEEE
International Conference on Human Robot Interaction (Christchurch, New Zealand)
(HRI ’16). IEEE Press, New York, NY, USA, 295–302. https://doi.org/10.1109/HRI.
2016.7451765

[30] Silvia Izquierdo-Badiola, Gerard Canal, Carlos Rizzo, and Guillem Alenyà. 2022.
Improved Task Planning through Failure Anticipation in Human-Robot Collabo-
ration. In 2022 International Conference on Robotics and Automation (ICRA). IEEE,
New York, NY, USA, 7875–7880. https://doi.org/10.1109/ICRA46639.2022.9812236

[31] Charles C. Kemp, Aaron Edsinger, Henry M. Clever, and Blaine Matulevich.
2022. The Design of Stretch: A Compact, Lightweight Mobile Manipulator for
Indoor Human Environments. In 2022 International Conference on Robotics and
Automation (ICRA). IEEE, New York, NY, USA, 3150–3157. https://doi.org/10.
1109/ICRA46639.2022.9811922

[32] Matthias Kovatsch, Yassin N. Hassan, and Simon Mayer. 2015. Practical semantics
for the Internet of Things: Physical states, device mashups, and open questions.
In 2015 5th International Conference on the Internet of Things (IOT). IEEE, New
York, NY, USA, 54–61. https://doi.org/10.1109/IOT.2015.7356548

[33] Alyssa Kubota, Emma I. C. Peterson, Vaishali Rajendren, Hadas Kress-Gazit, and
Laurel D. Riek. 2020. JESSIE: Synthesizing Social Robot Behaviors for Person-
alized Neurorehabilitation and Beyond. In Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction (Cambridge, United King-
dom) (HRI ’20). Association for Computing Machinery, New York, NY, USA,
121–130. https://doi.org/10.1145/3319502.3374836

[34] Nicola Leonardi, MarcoManca, Fabio Paternò, and Carmen Santoro. 2019. Trigger-
Action Programming for Personalising Humanoid Robot Behaviour. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3290605.3300675

[35] Ying Siu Liang, Damien Pellier, Humbert Fiorino, and Sylvie Pesty. 2019. End-
User Programming of Low-and High-Level Actions for Robotic Task Planning. In
2019 28th IEEE International Conference on Robot and Human Interactive Commu-
nication (RO-MAN). IEEE, New York, NY, USA, 1–8. https://doi.org/10.1109/RO-
MAN46459.2019.8956327

[36] Yuan-Hong Liao, Xavier Puig, Marko Boben, Antonio Torralba, and Sanja Fidler.
2019. Synthesizing Environment-Aware Activities via Activity Sketches. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
New York, NY, USA, 6284–6292. https://doi.org/10.1109/CVPR.2019.00645

[37] Arnold M Lund. 2001. Measuring Usability with the USE Questionnaire. Usability
and User Experience Newsletter of the STC Usability SIG 8, 2 (2001), 3–6.

[38] SimonMayer, RubenVerborgh,Matthias Kovatsch, and FriedemannMattern. 2016.
Smart Configuration of Smart Environments. IEEE Transactions on Automation
Science and Engineering 13, 3 (2016), 1247–1255. https://doi.org/10.1109/TASE.
2016.2533321

[39] Mahda Noura, Sebastian Heil, andMartin Gaedke. 2018. GrOWTH: Goal-Oriented
End User Development for Web of Things Devices. InWeb Engineering, Tommi
Mikkonen, Ralf Klamma, and Juan Hernández (Eds.). Springer International

https://doi.org/10.1109/TASE.2021.3094055
https://doi.org/10.1145/3466819
https://doi.org/10.1109/ICRA.2015.7139973
https://doi.org/10.1007/978-3-642-00644-9_30
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1016/j.jss.2018.11.041
https://doi.org/10.1007/978-3-030-24781-2_4
https://doi.org/10.1007/978-3-030-24781-2_4
https://doi.org/10.1109/ROBOT.2008.4543757
https://doi.org/10.1201/9781498710411
https://doi.org/10.1145/3332165.3347902
https://doi.org/10.1145/3322276.3322278
https://doi.org/10.1145/3322276.3322278
https://doi.org/10.1145/2909824.3020208
https://doi.org/10.1109/HRI.2019.8673193
https://doi.org/10.1007/978-3-319-47437-3_90
https://doi.org/10.1609/aimag.v28i2.2040
https://doi.org/10.1016/j.artint.2015.10.001
https://doi.org/10.1109/ICRA.2015.7139462
https://doi.org/10.1613/jair.1129
https://doi.org/10.1016/j.robot.2011.07.009
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1613/jair.1705
https://doi.org/10.1016/j.artint.2008.10.013
https://doi.org/10.1016/j.artint.2008.10.013
https://dl.acm.org/doi/abs/10.5555/2483716.2483722
https://dl.acm.org/doi/abs/10.5555/2483716.2483722
https://doi.org/10.1145/2909824.3020215
https://doi.org/10.1109/HRI.2016.7451765
https://doi.org/10.1109/HRI.2016.7451765
https://doi.org/10.1109/ICRA46639.2022.9812236
https://doi.org/10.1109/ICRA46639.2022.9811922
https://doi.org/10.1109/ICRA46639.2022.9811922
https://doi.org/10.1109/IOT.2015.7356548
https://doi.org/10.1145/3319502.3374836
https://doi.org/10.1145/3290605.3300675
https://doi.org/10.1109/RO-MAN46459.2019.8956327
https://doi.org/10.1109/RO-MAN46459.2019.8956327
https://doi.org/10.1109/CVPR.2019.00645
https://doi.org/10.1109/TASE.2016.2533321
https://doi.org/10.1109/TASE.2016.2533321

HRI ’24, March 11–14, 2024, Boulder, CO, USA David Porfirio, Mark Roberts, & Laura M. Hiatt

Publishing, Cham, 358–365. https://doi.org/10.1007/978-3-319-91662-0_29
[40] Ronald P. A. Petrick and Mary Ellen Foster. 2013. Planning for Social Interaction

in a Robot Bartender Domain. In Proceedings of the Twenty-Third International
Conference on International Conference on Automated Planning and Scheduling
(Rome, Italy) (ICAPS’13). AAAI Press, Washington, DC, USA, 389–397. https:
//doi.org/10.1609/icaps.v23i1.13589

[41] David Porfirio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Author-
ing and Verifying Human-Robot Interactions. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology (Berlin, Germany)
(UIST ’18). Association for Computing Machinery, New York, NY, USA, 75–86.
https://doi.org/10.1145/3242587.3242634

[42] David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi,
and Bilge Mutlu. 2023. Sketching Robot Programs On the Fly. In Proceedings of the
2023 ACM/IEEE International Conference on Human-Robot Interaction (Stockholm,
Sweden) (HRI ’23). Association for Computing Machinery, New York, NY, USA,
584–593. https://doi.org/10.1145/3568162.3576991

[43] David J. Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albargh-
outhi, and Bilge Mutlu. 2021. Figaro: A Tabletop Authoring Environment for
Human-Robot Interaction. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Com-
puting Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3411764.
3446864

[44] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and Bruno Maisonnier. 2009.
Choregraphe: a Graphical Tool for Humanoid Robot Programming. In The 18th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN ’09). IEEE, New York, NY, USA, 46–51. https://doi.org/10.1109/ROMAN.
2009.5326209

[45] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source Software.

[46] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents speak out in a logical com-
putable language. In Agents Breaking Away: 7th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World, Walter Van de Velde and
John W. Perram (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 42–55.
https://doi.org/10.1007/BFb0031845

[47] Sebastian Sardina and Lin Padgham. 2011. A BDI Agent Programming Language
with Failure Handling, Declarative Goals, and Planning. Autonomous Agents and
Multi-Agent Systems 23, 1 (jul 2011), 18–70. https://doi.org/10.1007/s10458-010-

9130-9
[48] Allison Sauppé and Bilge Mutlu. 2014. Design Patterns for Exploring and

Prototyping Human-Robot Interactions. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI
’14). Association for Computing Machinery, New York, NY, USA, 1439–1448.
https://doi.org/10.1145/2556288.2557057

[49] Andrew Schoen, Curt Henrichs, Mathias Strohkirch, and BilgeMutlu. 2020. Authr:
A Task Authoring Environment for Human-Robot Teams. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 1194–1208. https://doi.org/10.1145/3379337.3415872

[50] Andrew Schoen, NathanWhite, Curt Henrichs, Amanda Siebert-Evenstone, David
Shaffer, and Bilge Mutlu. 2022. CoFrame: A System for Training Novice Cobot
Programmers. In Proceedings of the 2022 ACM/IEEE International Conference on
Human-Robot Interaction (Sapporo, Hokkaido, Japan) (HRI ’22). IEEE Press, New
York, NY, USA, 185–194. https://doi.org/10.1109/HRI53351.2022.9889345

[51] Vikas Shivashankar, Ugur Kuter, Dana Nau, and Ron Alford. 2012. A Hier-
archical Goal-Based Formalism and Algorithm for Single-Agent Planning. In
Proceedings of the 11th International Conference on Autonomous Agents and Mul-
tiagent Systems - Volume 2 (Valencia, Spain) (AAMAS ’12). International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC, 981–988.
https://dl.acm.org/doi/abs/10.5555/2343776.2343837

[52] David E Smith, Jeremy Frank, and William Cushing. 2008. The ANML Language.
In The ICAPS-08 Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS).

[53] Laura Stegner and Bilge Mutlu. 2022. Designing for Caregiving: Integrating
Robotic Assistance in Senior Living Communities. In Proceedings of the 2022
ACM Designing Interactive Systems Conference (Virtual Event, Australia) (DIS
’22). Association for Computing Machinery, New York, NY, USA, 1934–1947.
https://doi.org/10.1145/3532106.3533536

[54] Unity Technologies. 2023. Unity Real-Time Development Platform. https:
//unity.com/.

[55] Karthik Valmeekam, Sarath Sreedharan, Sailik Sengupta, and Subbarao Kamb-
hampati. 2022. RADAR-X: An Interactive Mixed Initiative Planning Interface
Pairing Contrastive Explanations and Revised Plan Suggestions. In Proceedings of
the International Conference on Automated Planning and Scheduling, Vol. 32. AAAI
Press, Washington, DC, USA, 508–517. https://doi.org/10.1609/icaps.v32i1.19837

https://doi.org/10.1007/978-3-319-91662-0_29
https://doi.org/10.1609/icaps.v23i1.13589
https://doi.org/10.1609/icaps.v23i1.13589
https://doi.org/10.1145/3242587.3242634
https://doi.org/10.1145/3568162.3576991
https://doi.org/10.1145/3411764.3446864
https://doi.org/10.1145/3411764.3446864
https://doi.org/10.1109/ROMAN.2009.5326209
https://doi.org/10.1109/ROMAN.2009.5326209
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1145/2556288.2557057
https://doi.org/10.1145/3379337.3415872
https://doi.org/10.1109/HRI53351.2022.9889345
https://dl.acm.org/doi/abs/10.5555/2343776.2343837
https://doi.org/10.1145/3532106.3533536
https://unity.com/
https://unity.com/
https://doi.org/10.1609/icaps.v32i1.19837

	Abstract
	1 Introduction
	2 Related Work
	2.1 Robot End-User Programming
	2.2 Goal-Oriented Specification Paradigm
	2.3 Automated Planning in HRI

	3 System Design
	3.1 User Perspective
	3.2 Representing Goal Automata
	3.3 Creating a Branching Plan
	3.4 Viewing the Branching Plan
	3.5 Plan Execution
	3.6 Implementation

	4 System Evaluation
	4.1 Study Design
	4.2 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

