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Abstract

Designing novel application development environments
(ADEs) is a growing area of systems research within the
human-robot interaction (HRI) community. This research typi-
cally involves multiple intertwined components, including (1)
the construction of a system, the ADE, that affords end users
and application designers with the ability to develop robot ap-
plications, (2) the development of a testing platform that can
interpret and execute programs created through the ADE, and
(3) a validation that the ADE performs as intended, often in the
form of a user study or a series of case studies. In this paper,
we highlight a problem with the typical approach to design-
ing and developing novel ADEs for HRI—there is currently
little standardization in how these systems are developed and
validated, leading to difficulty in sharing resources between
different research groups and comparing between similar tools.
We argue that a standardized logical representation called an
Interaction Specification Language (ISL) can lead to more
streamlined development and validation of ADEs for HRI.

Introduction
The human-robot interaction (HRI) community has produced
significant advances in designing application development
environments (ADEs), or systems that facilitate the construc-
tion of social, service, or collaborative robot applications.
ADEs usually include a number of predefined, but general,
descriptive primitives for a robot platform (e.g., move, carry,
lift, hold) as well as operational models (e.g., motion plans,
behaviors) that can be executed to complete or carry out
those descriptive models. Crucially, the use of an ADE to
specialize a robotic platform to a particular application is
usually done by domain experts or robot end users. Any
low-level programming that is typically done by robotics
engineers is folded into the ADE and robotic platform. No-
table examples of ADEs include CoSTAR (Paxton et al. 2017)
and Moveit! Studio (Robotics 2023) for developing collab-
orative robots, iCustomPrograms (Chung et al. 2016) and
Vipo (Huang et al. 2020) for developing service robots, and
Choregraphe (Pot et al. 2009) and Leonardi et al. (2019)’s
trigger-action programming (TAP) Tailoring Environment for
developing social robots. ADEs are designed by researchers
in both academia and industry, often with different goals or
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development cycles. Some ADEs are created for market use
(e.g., Choregraphe, Pot et al. 2009) while others are created
as a way to contribute a novel development paradigm to the
HRI research community (e.g., Vipo, Huang et al. 2020).

While ADEs can be created for a variety of purposes, our
focus is on the latter category—the design of HRI ADEs
to pursue specific research goals and share novel technical
approaches with the HRI community, not (at least yet) for
market. These goals often pertain to investigating novel inter-
faces and development paradigms in order to improve HRI
application development for technical non-experts such as
robot end users. A researcher (or a team of software engi-
neers working under the direction of the researcher) must
then implement their design into a full-fledged system—the
ADE itself. To show that the ADE implementation achieves
the research goals set at the beginning of the project, it must
be validated. Validation of an ADE often occurs through
the creation of test cases or demonstrations, in which user
input to the ADE interface is shown to produce an optimal
robot program. In this paper, we refer to a program as a static
specification of a robot’s actions and decisions that it should
make when faced with internal and external stimuli. Valida-
tion also often occurs through user testing, i.e., asking study
participants to use the platform to program a robot or interact
with a robot executing programs created by the platform.

Unfortunately, relatively little standardization exists in how
researchers undertake ADE design and validation as outlined
above, leading to a diverse, yet inconsistent array of ADEs
with a limited ability to compare between them. One crucial
component of ADE design that suffers from a lack of stan-
dardization is the underlying logical representation of robot
programs, which define how the semantics of human-robot
interactions (e.g., robot actions, human behaviors, external
and internal events, working memory, world state, etc.) are
formally represented. Without a consistent underlying logical
representation, it is difficult to compare ADE functional-
ity, undergo consistent performance evaluations to situate
the technical capabilities of one ADE with respect to others
(i.e., ADE 1 guarantees that loops terminate, whereas ADE 2
makes no such guarantee), and benchmark the quality of pro-
grams produced by potential end users of different platforms
(e.g., evaluating whether users of ADE 1 produced programs
of significantly higher quality than users of ADE 2).

This lack of standardization places an increased burden on
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Figure 1: An illustration of how the ISL can fit within the HRI application development process.

ADE research groups. Researchers must develop their own
ad hoc logical representations and ad hoc runtime environ-
ments or compilers for enabling a robot to execute programs
expressed in these representations. The researchers then need
to perform ad hoc validation methods, possibly involving the
creation of an in-house test suite or a full-fledged comparison
baseline via ablating the functionality of the main ADE being
investigated. As a result of these ad hoc solutions, a large
portion of a research group’s engineering efforts are tightly
coupled to a specific ADE, which are difficult to reuse in
future research projects or by other research groups.

To address these issues, we advocate for the creation of
a standardized logical representation for HRI programs—a
human-robot Interaction Specification Language (ISL)—in
order to streamline the design and implementation of ADEs
and improve their validation. Figure 1 illustrates how an ISL
might be situated within the various components and stake-
holders involved in ADE design. We believe that having a
shared logical representation between researchers and their
industrial partners would reduce the need for ADE-specific
ad hoc implementation solutions, thus increasing the abil-
ity to share and compare solutions and validations between
research groups. In what follows, we propose a set of guide-
lines for a potential ISL and describe the required next steps
of how researchers in both academia and industry will need
to collaborate to bring an ISL to fruition.

Proposed ISL Guidelines
Standardizing how HRI ADEs represent programs can result
in more streamlined design of the development environments
themselves and better, more consistent validations. Specifi-
cally, we envision a singular, common domain-specific lan-
guage or a family of languages for human-robot interaction
that is akin to the Planning Domain Definition Language
(PDDL) (Fox and Long 2003) for automated planning or
Game Description Language (GDL) (Thielscher 2017) for
game theory. We have therefore devised a set of properties
that the semantics of a standard logical representation, or
Interaction Specification Language (ISL), should embody.

The first three properties pertain to the ability of the ISL
to (1) support existing logical representations, (2) support
different levels of expressiveness, and (3) support predefined
and reusable skills. The next three properties pertain to the
ISL being (4) verifiable at design time, (5) predictable at
runtime, and (6) both application and domain agnostic.

Support Existing Logical Representations. Though no
standardized logical representation exists across modern
ADEs, there are many current, well-known representations
that individual ADEs use for encoding programs. For ex-
ample, users of CoSTAR create programs as behavior trees
(Paxton et al. 2017); users of RoVer create programs as tran-
sition systems (Porfirio et al. 2018); and users of Senft et al.
(2021)’s situated live programming platform create event-
driven trigger-action programs (TAPs).

The wide variety of existing logical representations under-
lying different ADEs attests to the unique benefits that each
representation affords. Choosing an optimal representation is,
in fact, a key component of researching novel ADEs. The cho-
sen representation of an ADE affects the user experience (e.g.,
TAP is more accessible to programming novices) and the ease
of adopting state-of-the-art software engineering techniques
such as verification, synthesis, and repair (e.g., transition sys-
tems can often be used as direct input to program verification
techniques (Baier and Katoen 2008)). The logical represen-
tation of an ADE can further restrict the functionality of the
robot (e.g., TAP limits the ability to designate a sequence
of behaviors for the robot to perform). An ISL should there-
fore not attempt to overthrow existing representations and
enforce a single, new representation in their place. Rather, an
ISL should support existing representations by, for instance,
providing a superset representation that encapsulates exist-
ing common subrepresentations, or by facilitating the easy
translation of researcher-chosen representations into the ISL
and vice versa by researchers’ own preferred methods.

Support Different Levels of Expressiveness. Existing
ADEs support different levels of expressiveness, i.e., the
level of detail at which programs can be specified. Glas et al.



(2012) describes an architecture that includes a high-level
application layer and lower-level behavior and information
processing layers. The application layer enables users with
lower levels of technical expertise to specify the flow of a
human-robot interaction and the decisions that the robot may
make (useful for technical non-experts), while the lower lay-
ers enables users with higher technical expertise to specify
individual robot behaviors. Other ADEs extend behavioral-
level expressiveness to technical non-experts, such as through
Choregraphe’s keyframing functionality (Pot et al. 2009) and
through Puppet Master’s use of programming by demonstra-
tion (Young, Igarashi, and Sharlin 2008).

It seems clear that an ISL should support hierarchical con-
structions that map to functionality at different levels of ab-
straction. At the high level, the ISL should support function-
ality similar to existing approaches for specifying interaction
flow, such as the encapsulation of robot behaviors within dis-
crete actions and the symbolic representation of internal and
external phenomena (e.g., behavior and Internet-of-Things
(IoT) devices) as both triggers and world state. Furthermore,
the ISL should be modular such that individual agents (e.g.,
the robot together with any human and IoT devices in the
vicinity) can be specified separately with shared resources.

At the low level, the ISL should support functionality sim-
ilar to existing robot programming frameworks and software
development kits (SDKs). Examples include the robot op-
erating system (ROS), which facilitates asynchonicity and
parallelism (Quigley 2009), and NaoQi, which facilitates en-
coding precise joint angles, continuous-time behaviors, and
raw sensor input into programs (Pot et al. 2009). The abil-
ity to encode low-level functionality into a logical program
representation is crucial to the existence of development plat-
forms that support keyframing (e.g., Pot et al. 2009) and
programming-by-demonstration (e.g., Young et al. 2012).

It is clear that our vision of ISL involves support for multi-
ple components at each level of the hierarchically-modular
design, including such details as continuous time and precise
joint angles, to name some examples. A singular logical rep-
resentation that captures all of these details, however, will
be cumbersome to create, difficult for ADE researchers and
their industry partners to adopt, and inflexible to trends in
the field. Therefore, we propose that an ISL not be a single,
all-purpose logical representation, but instead an extendable
and parameterizable family of representations, similar to the
different variants of PDDL.

Support Predefined and Reusable Skills. The purpose of
ADEs in HRI is to enable the hand crafting of a static and
usually deterministic specification that guides a robot on how
to perform a task or engage in a social interaction. However,
not all components of an HRI platform need or should be
formally specified in the ISL logic.

The ISL must also support the integration of profession-
ally engineered black-box robot skills, e.g., visual servoing
and autonomous navigation and localization. Skills should
be able to be defined by ADE end users as well, such as if a
users wishes to keyframe a waving behavior on a social robot.
The ISL should additionally support non-hand crafted skills,
e.g., skills that are trained via machine learning. Learned,

engineered, and user-defined black-box skills can then be
treated as reusable functions available for parameterization
and instantiation at different levels within ISL’s expressive-
ness hierarchy. A the low level, a skill may consist of an
individual robot behavior or social cue. At higher levels, a
skill may consist of a learned interaction flow and decision-
making parameters, such as a conversational module.

The ISL should additionally recognize the ability of robots
to make autonomous decisions via AI planning. It should
therefore support the ability of ADE researchers and end
users to label robot actions and skills with pre and postcondi-
tions and positive and negative effects.

Verifiable at Design Time. Programs produced by devel-
opment platforms should be easily verifiable, i.e., the logic
should be easily shown to adhere to a set of correctness
properties. The ability of the ISL to support verification will
depend on its ability to be modeled within an easily verifi-
able representation (i.e., a transition system for verification
through model checking). Properties of interest must also be
able to be represented within standard property-specification
logic, such as linear temporal logic (LTL) for discrete sys-
tems, signal temporal logic (STL) for cyber-physical systems,
or probabilistic linear temporal logic (PLTL) for probabilistic
systems. Complex programs with multiple levels of expres-
siveness are less computationally feasible to verify, increasing
the need for the ISL to facilitate the modular and hierarchical
program construction.

Predictable at Runtime. Even if deemed as satisfying a
set of correctness properties, HRI programs may be unpre-
dictable at runtime due to variability in testing platforms used
between different research groups. Even if using the same
ADE, different research groups must sometimes construct
ad hoc runtime environments to execute ISL programs. For
example, if an ISL program (perhaps naı̈vely) assumes that a
path exists to the robot’s destination yet no path exists at run-
time, then one runtime environment may cause the robot to
wait forever while a different runtime environment equipped
with a planner may replan a different sequence of actions for
the robot to perform that achieve the same effect.

ISL should anticipate and enumerate runtime contingen-
cies that are unspecified or underspecified by ADE end
users. When an ADE is released to the research commu-
nity, research teams may also provide a “contingency sheet”
that specifies the default fail-safe protocols that an ISL-
programmed robot will exhibit in the event of underspecified
or unforeseen phenomena.

We hope that the adoption of an ISL would encourage
industry partners—the designers and developers of robot
platforms—to assist in the standardization of handling run-
time contingencies. Industry assistance may consist of pre-
specifying and providing research groups with platform-
specific fail-safe protocols. Going a step further, industry
partners can also ship standard runtime environments with
their robots that interpret ISL specifications directly, entirely
removing the need for ADE research groups to create their
own ad hoc runtime environments. Industry partners may
also provide SDK support for reading and converting ISL
programs into a their own platform-specific representations.



Application and Domain Agnostic. The ISL should be
nonspecific in its support for different application areas (i.e.,
social, service, and collaborative robotics) and domains (e.g.,
healthcare, manufacturing, education, etc.) within HRI. The
ISL should therefore be agnostic to any particular robot form-
factor or software developer kit (SDK), similar to how PDDL
is agnostic to any particular planning algorithm. At minimum,
the ISL itself should not contain any platform-specific tokens.
Rather, ISL can support SDK integration, and ISL modules
can be constructed to wrap SDK functionality.

SDK integration provides an additional opportunity for
industry to support the standardization of ADE research.
Consider the multitude of robot platforms and their SDKs
that support volume control. Industry partners can wrap
SDK functionality within a standardized ISL module
with a standardized module name and parameters, e.g.,
setVolume(int level). ADE researchers can then
use the same ISL logic to interface with any robot platform
that supports volume control.

Discussion
Our vision of a standardized human-robot interaction specifi-
cation language, or ISL, is motivated by the need for more
streamlined ADE design and implementation, consistent plat-
form validations, and increased comparability between plat-
forms. In what follows, we elaborate on the benefits that
an ISL might have within the academic and industrial HRI
communities and offer a vision of future work.

Potential ISL Benefits. We expect that an ISL would
streamline the work of ADE researchers, who ideally would
no longer need to laboriously ensure that ADE programs
can be interpreted by or complied to multiple unique run-
time platforms. Rather, a standardized logical representation
across industry and academia would ensure that any ADE
program, as is, would feasibly execute on any ISL-supported
robot platform. Furthermore, an ISL that follows our pro-
posed guidelines would avoid additional effort from ADE
researchers to adapt to an unfamiliar logical representation.
Instead, we advocate that the ISL support existing logical
representations and existing levels of expressiveness to which
researchers have already become accustomed. The ISL may
therefore exist as a superset of existing representations or
facilitate the easy translation of researchers’ preferred repre-
sentations to and from the ISL.

We expect that a ISL would also ease the burden of val-
idation, as the verifiable and predictable characteristics of
ISL would enable the creation and sharing of correctness
properties (i.e., in LTL) and runtime parameters. The creation
and sharing of correctness properties and runtime parameters
would additionally facilitate a better comparison between
separate ADEs. A standard set of properties and parameters
can be used as benchmarks within the HRI ADE research
community (e.g., under a specific set of runtime parameters,
ADE 1 guarantees that its programs satisfy a greater number
of properties than ADE 2). Furthermore, a standard program
representation enables researchers designing an ADE to cre-
ate and share programs with other researchers designing other
ADEs. Entire research communities can use each other’s pro-

grams as test cases that prove that their ADE can produce
programs equivalent to existing ADEs.

Lastly, an ISL would help academic and industrial re-
searchers bridge their work across the intellectual property
(IP) boundary. A prioprietary development platform can be
more easily extended, utilized, or replicated if the underlying
representation of programs that it creates is the same as that
being used by researchers in other organizations.

Future Work. Due to the potentially far-reaching benefits
that an ISL would have on the HRI systems research com-
munity, we envision its development as being an effort that
bridges academia and industry. If the popularity of a ISL
grew, industrial researchers could greatly benefit the wider
HRI community by providing integration of the ISL within
the SDKs of their robots. Companies that build development
platforms for their robots may consider enabling their ADEs’
resulting programs to be compiled to the ISL representation.
Recognizing that we, the authors, embody an academic rather
than industrial research perspective, a necessary first step to-
wards commercial integration of ISL will be to more closely
align our vision with that of the industrial HRI community.
We aim to learn more about industry-specific challenges, such
as the involvement of multiple stakeholders within the devel-
opment of a robot platforms, how an ISL can be constructed
so as not to restrict third-party developers from extending a
robot platform, and how an ISL can facilitate the passing of
design constraints between independent stakeholders.

As part of our own ongoing and future efforts towards
realizing an ISL, we look to existing languages as candi-
dates to extend rather than to build an entirely new language
from scratch. Within the model checking community, the
PRISM (Kwiatkowska, Norman, and Parker 2011) and UP-
PAAL (Behrmann et al. 2006; David et al. 2015) languages
serve as expressive variants of transition systems that directly
support verification. Agent planning programs allow the spec-
ification of agent goals within a similar transition system
representation, while additionally incorporating a planning
domain that enables these programs to be synthesized, or
realized (De Giacomo et al. 2016). Additional languages
have emerged from within the Belief-Desire-Intention (BDI)
paradigm that enable the expression of goals, such as AgentS-
peak (Rao 2005) and variants of CAN (e.g., Sardina and
Padgham 2011). BDI languages have also been used to de-
fine semantics for goal life-cycles (Harland et al. 2014). For
supporting predefined and reusable skills within a choice rep-
resentation, Goal Skill Networks offer insight into encoding
learned policies within hierarchical goal networks (Patra et al.
2022). Additional, non-state-based formalisms are common
in robot control, (e.g., Marzinotto et al. 2014), and should
also be investigated as potential starting points.
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