
ar
X

iv
:2

50
6.

22
60

4v
1

 [
cs

.A
I]

 2
7

Ju
n

20
25

Bootstrapping Human-Like Planning via LLMs

David Porfirio1, Vincent Hsiao2, Morgan Fine-Morris2, Leslie Smith1, and Laura M. Hiatt1

Abstract— Robot end users increasingly require accessible
means of specifying tasks for robots to perform. Two common
end-user programming paradigms include drag-and-drop in-
terfaces and natural language programming. Although natural
language interfaces harness an intuitive form of human commu-
nication, drag-and-drop interfaces enable users to meticulously
and precisely dictate the key actions of the robot’s task. In
this paper, we investigate the degree to which both approaches
can be combined. Specifically, we construct a large language
model (LLM)-based pipeline that accepts natural language as
input and produces human-like action sequences as output,
specified at a level of granularity that a human would produce.
We then compare these generated action sequences to another
dataset of hand-specified action sequences. Although our results
reveal that larger models tend to outperform smaller ones in
the production of human-like action sequences, smaller models
nonetheless achieve satisfactory performance.

I. INTRODUCTION

Robot end-user programming (EUP) tools assist novice
or otherwise non-expert users in intuitively and effectively
specifying tasks for robots to perform. Many such approaches
design programming graphical user interfaces (such as drag-
and-drop interfaces) that users can employ to correctly
and fluently specify the robot’s desired behavior. Such ap-
proaches give users precise control over robot behavior, but
can be difficult for novices [1] or have a learning curve [2].
Other approaches that encourage users to incompletely or
abstractly specify the robot’s task, such as by specifying only
a subset of task checkpoints and relying on an automated
planner to come up with an actionable plan for the robot to
execute, require a shift in task comprehension [3].

This problem is not unique to EUP. People in general find
it difficult to generate detailed, efficient plans, even if they
are meant for themselves [4], [5]. People often create physi-
cal artifacts, elaborate plans, and routines around scheduled
activities to make it easier to manage the mental load of
scheduling complicated goals under multiple constraints [6].

Here, we are interested in developing an approach for
bootstrapping the EUP workflow based on an initial, small
set of human-provided natural language (NL) commands.
We envision accomplishing this via a multi-step command-
to-action-sequences (CAS) pipeline that serves as the initial
source of input to the EUP tool, as depicted in Figure 1. Prior

*This work was supported by NRL
1Navy Center for Applied Research in AI, US Naval

Research Laboratory, Washington, DC 20375, USA
{david.j.porfirio2, leslie.n.smith20,
laura.m.hiatt}.civ@us.navy.mil

2NRC Postdoctoral Researcher, Navy Center for Ap-
plied Research in AI, US Naval Research Laboratory,
Washington, DC 20375, USA {vincent.hsiao,
morgan.f.fine-morris}.ctr@us.navy.mil

Fig. 1. We envision a multi-step natural language command-to-action-
sequence (CAS) pipeline as an entry point to robot end-user programming.

to using the tool, users provide an NL command of what they
want the robot to do. Then, the CAS pipeline uses an LLM
to identify symbolic entities in the world that are relevant
to the command. Next, a translator Large Language Model
(LLM) translates the command and relevant entities into a
symbolic representation of the key actions that the robot must
perform to fulfill that command. Post-processing aligns the
symbolic actions output by the LLM with the actual actions
in the domain of interest. Once the CAS pipeline has run to
completion, users can then refine the action sequence via a
drag-and-drop interface.

As part of this pipeline, we strongly focus on generating
human-like action sequences from the NL commands. Mis-
matches in how the human expects their NL to be interpreted
by the robot and how their NL is actually interpreted require
explanations, which can be costly if not applied appropriately
[7], or techniques for reconciling the human’s expectation
with the robot’s behaviors [8]. This can place a high burden
on the interface and user during the refinement of the action
sequence. The production of human-like action sequences
is thus crucial to our objective, differentiating our research
from prior successes in using LLMs within automated task
planning [9], [10], [11].

To address this, we seek to understand how well LLMs
translate an NL command to a sequence of key actions that
are similar to those a human would produce. We consider
several LLMs for this role, including LLMs of various sizes
and LLMs that are fine-tuned on a dataset of hand-created
task plans for common household tasks. Overall, we show
that the CAS pipeline produces human-like action sequences
and how smaller LLMs perform compared to larger ones in
several metrics. Our contributions are as follows:

• Technical: a CAS pipeline that translates NL commands
into human-like action sequences.

• Empirical: a characterization of how different LLMs
affect the performance of the CAS pipeline.

• Design: implications for integrating the CAS pipeline
into future robot EUP systems.

https://arxiv.org/abs/2506.22604v1

II. RELATED WORK

Our research is informed by robot EUP, LLMs for task
planning, and datasets of human-robot task communication.

A. End-User Robot Programming

Robot EUP has traditionally involved meticulous block-
based [12], [1], flow-based [13], [14], or trigger-action based
[15] visual programming. Recent research has focused on
how novel interfaces can be designed to facilitate intuitive
use of each of these paradigms [16], [17], [18].

Overwhelmingly, robot EUP interfaces are action-oriented
[3], meaning that users express robot tasks in terms of hand-
crafted task plans, or the sequences of actions that a robot
must perform in order to achieve a goal. Hand-crafting,
rather than automating, the task planning process is vital
for enabling end-users to shape how robots perform tasks.
However, building tasks from scratch can be difficult for
novice users, as evidenced by prior work [3], [1].

Due to the intuitiveness of NL for human communica-
tion, natural language programming is a promising solu-
tion for overcoming the difficulty of hand-specifying action
sequences. Historically, NL has a rich history in robot
EUP, with prior work mapping NL tokens to programmatic
representations [19], [20], [21], [22], [23]. More recently,
EUP systems have successfully leveraged LLMs in order to
generalize beyond specific domains and alleviate the need for
explicit mapping between NL and symbols [24], [25], [18].
These works excel at translating NL to individual commands,
though none explore the use of LLMs for replicating hand-
specified action sequences for the robot to perform.

B. LLMs for Planning

There has been a recent surge of work that investigates
how LLMs and Large Reasoning Models (LRMs) can ef-
fectively be used for planning [9], [11], [10]. Despite the
power of these types of models, planning remains a chal-
lenge [26], with LLM-based planners unable to meet many
established planning benchmarks. Unlike prior work that
focuses on generating correct, complete, or executable plans,
or plans grounded in a specific context [27], our work has
a different purpose. Informed by prior work in explainable
AI that suggests humans attribute human-like psychological
mechanisms to AI agents [28], we instead aim to translate NL
commands to action sequences in a manner similar to how a
human would do it. This can then be used to pre-populate a
visual EUP interface to assist the human with making further
refinements to the plan. From an LLM planning perspective,
this allows humans to correct the (messy/incorrect) plan
output that LLMs produce.

C. Robot Task Specification Datasets

Numerous datasets exist for human-robot task communica-
tion. Of these datasets, only a few pair NL task descriptions
with discretized sequences of a user’s desired high-level
robot actions. As part of this work, we utilized the Virtu-
alHome Activity Dataset [29]. This dataset contains human-
generated NL descriptions of common household activities.

For example, a user may describe throwing away a news-
paper as: Take the newspaper on the living room table and
toss it. These descriptions are paired with human-generated
“programs” that accomplish them, represented in a predicate-
based form. There are 2821 pairs of descriptions/programs
in the dataset that span numerous household tasks. Separate
from VirtualHome, Porfirio et al. (2023)’s Task Traces dataset
asked crowdworkers to enumerate sequences of actions that
they would perform to achieve an objective and optionally
pair individual actions with NL descriptions [30]. Another
example is the ALFRED dataset, which is similarly com-
prised of action sequences paired with NL descriptions [31].
In contrast to its counterparts, however, ALFRED’s action
sequences are not created by hand. Rather, they are produced
by an automated task planner.

III. TECHNICAL APPROACH
The goal of this work is to use LLMs to translate between

NL commands and the human-like action sequences that
accomplish them. By NL command, we mean a spoken
command that a person says to a robot in order to get the
robot to perform desired behavior(s). It can be general (i.e.,
“get the mail”) or specific (i.e., “get the mail from the mail
slot, sort it, and leave it on the kitchen counter”), depending
on the user’s preferences. Given this command, the robot
should automatically generate a symbolic representation of
how it believes it can best operationalize that behavior. We
envision the user then being able to adjust the behavior in a
traditional EUP interface, if necessary.

The CAS pipeline has three main steps to perform this
translation task, each depicted in Figure 2. First, Entity
Inference narrows the known entities in the environment to
those that are relative to the NL command being translated.
Second, the Command Translation step uses an LLM to
translate the NL command and relevant entities into an
action sequence. Third, a Post Processing step maps the
action sequence’s commands to ones that are pertinent to
the domain. We next describe each step in more detail.

A. Entity Inference
Given the set of known entities in the robot’s environment,

the first step in our pipeline is to narrow this set to the entities
that are pertinent to the user’s command. To do this, we use
off-the-shelf Mistral Codestral 22B v0.1. For example, given
an NL command, “Find your roommate and tell them they
have a phone call,” the prompt looks like:

The set of entities in the world is: master bedroom lamp,
bedside table, desk, master bedroom, hallway, bathroom, car, garage,
bedroom, bedroom lamp, refrigerator, kitchen cabinets, countertop,
kitchen, back door, table, living room, living room lamp, entrance,
coffee table, front door, living room cabinets, vacuum, clock.

Given the command “Find your roommate and tell them they
have a phone call”, provide a short list of the entities only from this
set that relate to this command.

The list of known entities can change depending on the
robot’s domain. Given the prompt above, the output is
phone, roommate.

Natural Language Command Command Translation LLM

"Pick up all the clutter
from the floor and throw

it in the garbage can."

1. moveTo(rubber duck)

...
4. place(rubber duck, garbage can)

3. moveTo(garbage can)

2. grab(rubber duck)
• rubber duck
• toy elephant
• basketball
• dishes
• garbage can

Raw Action
Sequence

Action
Sequence

Relevant Entities

post-processing

Entity Inference LLM

Fig. 2. The CAS pipeline for translating NL commands into action steps.

B. Command Translation

Next, the CAS pipeline uses another LLM to perform
command translation, where the NL command is translated
into an action sequence. To perform this translation, we
provide the LLM with prompts of the following form, filling
in the entities and the task description as appropriate:

You are a robot. Given a task expressed in NL, you need to produce
the steps necessary to achieve the goals of the task.

The entities in the environment are as follows: phone, roommate

Your task in NL is as follows:
“Find your roommate and tell them they have a phone call.”

If using a pretrained (not fine tuned) LLM for command
translation, the prompt additionally requires a list of actions
in predicate form that are available to the robot. If fine-
tuned on a dataset of action sequences (e.g., the VirtualHome
dataset), a list of available actions is not necessary. An ex-
ample output from the above prompt is Walk(roommate),
Find(phone), Grab(phone), TurnTo(roommate),
LookAt(roommate), PointAt(phone), Talk(‘‘I
found my phone!’’), PutObjBack(phone).

C. Post-Processing

The command translation step produces a raw action se-
quence (Figure 2, right) that requires post-processing before
being given to an EUP tool or a robot. If the command-
transation LLM has been fine-tuned on a dataset like Virtu-
alHome, the actions in the raw output may differ from the
actions that are recognizable by the EUP tool or the robot.
Keyword-based mapping between the dataset actions and the
set of acceptable actions suffices here. Dataset actions that
fail to map to acceptable actions, refer to nonexistent entities,
duplicate the previous action, or are extraneous (such as
wait(), which does nothing) are removed.

IV. EVALUATION

We evaluated the effectiveness of the CAS pipeline’s abil-
ity to produce action sequences that match human-produced
action sequences. Our evaluation considers five different
LLMs for the Command Translation step, depicted in Table
I. Our evaluation focuses on characterizing how lightweight,
smaller LLMs perform this task against larger, heavyweight
models, and how fine-tuned models perform against their
pre-trained counterparts. Note that the pretrained version of
Mistral 7B (M) did not produce consistently usable output;
thus, M is excluded from further analyses.

Fine- Included in
ID Model Tuned Parameters Further Analysis
M Mistral 7B
Mt Mistral ✓ 7B ✓
P Phi-4 14B ✓
Pt Phi-4 ✓ 14B ✓
S Sonnet v2 unk. (large) ✓

TABLE I
LLMS USED IN OUR EVALUATION.

A. Fine-Tuning Mt and Pt

Using QLoRA [32], we fine-tuned Mt and Pt on the
VirtualHome dataset described in §II-C, which contains
2821 hand-generated NL descriptions paired to hand-created
action sequences. Mt was fine-tuned with 1000 steps. Pt, a
larger model, was fine-tuned with 2000 steps. Our training-
validation split is 80% and 20%, respectively.

Due to being fine-tuned with the VirtualHome dataset, Mt

and Pt produce actions defined via VirtualHome predicates.
As described in §III-C, we use a keyword-based approach to
map VirtualHome actions to those accepted by our pipeline.

B. Evaluation Dataset

The VirtualHome dataset, while large and comprehensive
for capturing how humans describe tasks using natural lan-
guage, is not strongly indicative of EUP paradigms. Specifi-
cally, participants were required to specify actions sequences
that included all steps necessary for a robot to execute a
task [29]. In contrast, many EUP paradigms allow users to
omit implied steps and let a planner fill in the small details
automatically. To this end, we looked to a different dataset
to evaluate how well this pipeline would apply to EUP tools.

Evaluating the CAS pipeline requires a dataset that pairs
action sequences with a single, overarching NL description.
The dataset must also be comprehensive, that is, encompass
multiple task categories. Few datasets exist that fully satisfy
these requirements, though the Task Traces dataset [30]
comes close. This dataset is comprehensive—it is comprised
of 207 action sequences created by crowdworkers for 18
different task categories that someone may perform around
the home, ranging from getting the mail to answering the
front door. However, the dataset does not pair NL de-
scriptions to whole action sequences. Rather, crowdworkers
optionally annotated individual actions with individual NL
descriptions. A simplified task, example action sequence, and
its corresponding description sequence is shown in Figure 3;
see [30] for full details of the dataset.

Task: Imagine that you are home and the phone rings. The person on the other end
of the line asks to speak to your roommate.

User action sequence and descriptions:
Step: 0. move to<[{'argname': 'destination', 'argval': 'Bedroom’}]>

Individual NL Command: “look for him"
Step: 1. approach<[{'argname': 'person', 'argval': 'Roommate’}]>

Individual NL Command: “inform him about the call”
Step: 2. place<[{'argname': 'object', 'argval': 'phone '},
 {'argname': 'destination', 'argval': 'Table’}]>

Individual NL Command: “place the phone on the table and ask him to talk”

Fig. 3. Simple data point from the Task Traces dataset [30].

Of the 207 action sequences, we first eliminated 150
that were purely social tasks or contained critical actions
that lacked NL descriptions. Determining critical actions
involved an author reviewing each action by hand to deter-
mine if its inclusion in the sequence is implied by a future
action; if not, the action is critical. For example, if an action
sequence is {move to(broom),grab(broom)}, then
move to(broom) is not critical while grab(broom)
is. We then eliminated another 17 sequences where the
action sequence did not match the corresponding description
sequence (such as if a user described putting down the gro-
ceries, but the actions specify only moving into the kitchen).
This second stage of elimination was performed by two
authors coding each example separately and then meeting
to resolve differences. 40 action sequences remained.

We then augmented the Task Traces dataset to ensure that
it meets the requirement of having a single overarching NL
description per whole action sequence. Specifically, for each
action sequence, we created overarching NL summaries of
the individual NL commands paired to individual actions.
Three summaries were created per action sequence. Two of
these summaries were generated by the authors of the paper,
who were instructed to consider the task, the NL descriptions
paired to each action in sequence, and the actions themselves.
Additionally, we used off-the-shelf Anthropic Sonnet 3.5 v2,
with a temperature of 0, to generate a third overarching NL
summary. The prompt began with a description of the task
similar to that in the original dataset, followed by instructions
for the LLM and the NL descriptions of the action sequence:

You are home and the phone rings. The person on the other end
of the line asks to speak to your roommate. Please summarize the
following steps as a short sentence. Skip or combine unimportant
steps. Phrase it as a command to yourself in the second person.

1. look for him
2. inform him about the call
3. place the phone on the table and ask him to talk

An example human-generated summary of these steps is In-
form my roommate of the call and place the phone on the
table for him. Example LLM-generated output is Find your
roommate and tell them they have a phone call.

C. Evaluation Measures

Our evaluation includes several measures intended to
compare LLM-generated action sequences to their human-
produced counterparts. We consider action sequences to be

human-like if they (1) contain the same actions as their
human-created counterparts (action similarity); (2) are sim-
ilar to their human-created counterparts in the final state of
the world resulting from executing the sequences (final state
similarity); and (3) are substantially different in length to
their human-created counterparts (length discrepancy).

First, we consider action similarity via two separate mea-
sures, the first being plan difference, which is a measure
of distance between two action sequences that focuses on
actions that are different between the two sequences, while
de-emphasizing the order in which those actions appear [33].
The distance is calculated as |A − B| + |B − A| for two
action sequences A and B, or the number of actions that
appear in one action sequence but not the other (and vice
versa) without regard for action order. Lower plan difference
indicates higher action similarity.

Our second action similarity measure considers the order
in which actions appear, and is the Levenshtein distance
between the two action sequences. This distance calculates
the number of edits that must be made to an action sequence
A in order to turn it into action sequence B, including
insertion, deletion and replacement edits. Lower Levenshtein
distance indicates higher action similarity.

For our next measure, final state similarity, we calculate
the similarity between the final state of the world produced
by LLM-generated action sequences and their human-created
counterparts. We first translate each action sequence to the
Interaction Specification Language (ISL) [34], which re-
quires a planning problem definition. We based our problem
definition on the Task Traces dataset. We then calculate an
actionable plan for each sequence using Porfirio et al. (2024)
[3]. Actions deemed impossible for the robot to perform,
such as grab(car), are ignored.

Then, to perform the similarity calculation, let I be the
initial state of the world, Fh be the human-produced final
state, and Fl be the LLM-produced final state. The similarity
calculation is the size of the difference between the LLM-
produced and human-produced states normalized by the size
of the difference between the human-produced state and the
initial state. We then subtract this value by 1 to create an
inverse relationship, where higher similarity values are better:
1− |Fh − Fl| ÷ |Fh − I|.

For our final measure, length discrepancy, we consider
the difference in length between LLM-produced action se-
quences and their human-created counterparts. To calculate
this measure, we count the actions in each action sequence
and take the absolute value of the difference between its
length and the length of its human-created counterpart. Note
that our measures for action similarity implicitly account
for length differences. However, explicitly calculating the
difference in lengths helps determine how much action
similarity can be accounted for by varying plan lengths.

D. Evaluation Procedure

First, we fed the NL summaries created in §IV-B to the
CAS pipeline. Next, we compared each output from the
CAS pipeline to its corresponding human-generated action

Mt PtP S Mt PtP S Mt PtP S Mt PtP S

Di
ffe

re
nc

e
(higher is better)(lower is better) (lower is better)

Di
st

an
ce

N
or

m
. M

at
ch

ed
 P

re
di

ca
te

s

Final State Similarity Length Discrepancy

* **† * ** *
*

N
um

be
r o

f A
ct

io
ns

Plan Difference
Action Similarity

Levenshtein Distance

2
4
6
8

10
12
14
16
18

0 0

2

4

6

8

10

12

14

-1.5

-1.0

0.5

0.0

0.5

1.0

0

2

4

6

8

10

12 †

Severe departures from
human-produced final state

Fig. 4. Results for Action Similarity (left), Final State Similarity (center), and Length Discrepancy (right). †, *, and ** denote p < 0.1, p < 0.05, and
p < 0.01, respectively.

sequence using the measures discussed in §IV-C. Recall that
for each action sequence, there are three NL summaries—
two originating from the authors and one originating from
an LLM. For each of our measures, we averaged the output
from each of the three summaries to produce a single value.

V. RESULTS

a) Action Similarity: A Friedman test detected a
marginal effect of LLM model on plan difference, (Figure 4,
left), χ2(3) = 6.75, p = 0.080. Post-hoc Wilcoxon tests with
the Bonferroni correction1 indicate a significant difference
between P and S (p = 0.024) and a marginal difference be-
tween Pt and S (p= 0.083). Another Friedman test detected
a significant effect of LLM model on Levenshtein distance
(Figure 4, center left), χ2(3) = 7.93, p = 0.048, with
pairwise differences between P and S (p < 0.01) and Pt and
S (p = 0.036), and a marginal difference between Mt and S
(p = 0.071). Takeaway: The largest pretrained model (S)
tends to produce better-matching action sequences than
the smaller models.

b) Final State Similarity: A Friedman test detected a
significant effect of LLM model on Final State Similarity
(Figure 4, center right), χ2(3) = 21.8, p < 0.001. Post
hoc comparisons with the Bonferroni correction indicate
significance between Mt and P (p = 0.011), Mt and S (p
< 0.01), and Pt and S (p = 0.020). One-sample Wilcoxon
tests indicate that the action sequences resulting from all
four models produce final states that differ significantly
from 0, indicating some progression from the initial state
of the world (p < 0.01 for Mt and p < 0.001 for P, Pt,
and S). Takeaway: All models produce action sequences
that are useful, advancing the robot towards ground-
truth final state. Although fine-tuning helps Mistral 7B
(Mt) produce useful action sequences compared to the
incoherent output of its pretrained baseline (M), fine-
tuning does not have a significant effect on Phi-4 (P vs.
Pt). Larger models tend to outperform smaller models.

c) Length Discrepancy: We did not detect any signifi-
cant effect of LLM model on length discrepancy (Figure 4,

1We applied the Bonferroni correction by multiplying the p-value of each
pairwise comparison by the total number of comparisons, which is six.

right). Post-hoc tests revealed no significance in any pair-
wise comparison. Takeaway: Our models produce action
sequences that consistently differ in length.

VI. CONCLUSION

In this paper, we introduce a novel pipeline for translating
natural language commands to human-like action sequences.
Our aim is to produce human-like action sequences given
only natural language as input, in which human-likeness of
an LLM-produced action sequence is defined in terms of (1)
similarity to its hand-crafted counterpart; (2) the degree to
which the LLM-produced action sequence achieves the final
state of the world achieved by its hand-crafted counterpart;
and (3) the discrepancy in action sequence length to its
hand-crafted counterpart. In what follows, we summarize our
findings and produce concrete implications for applying the
CAS pipeline in robot EUP.

A. Implications for Human-Like Action Sequences

First, as evidenced by our action-sequence similarity and
final state similarity results, larger LLMs appear better than
smaller ones at producing human-like action sequences.
That being said, smaller models do remarkably well. Mt

and Pt, both fine-tuned small models, show no significant
difference in length to their largest counterpart, S, and Mt

does not show a significant difference (p < 0.05) to S in
action similarity. Furthermore, all models, both small and
large, produce action sequences that significantly advance
the robot towards its intended final state. Implication: The
CAS pipeline should use larger models when available and
practical. If using larger models is infeasible, such as when
tasking robots in the field, smaller models may produce
similar performance to the large ones across some metrics.

Second, in all of our measures, fine-tuned models exhibit
no significant difference to their pretrained counterparts.
However, the fine-tuned version of Mistral 7B, Mt, was able
to produce coherent, useful output, even when its pretrained
counterpart (M) could not. Implication: Fine-tuning may or
may not be necessary, depending on the model being used.

Lastly, we note that the discrepancy of lengths between
human-produced and LLM-produced action sequences is
largely consistent across all four models, with no significant

difference between models. Implication: Length discrepancy
is a weak differentiator of human-likeness for the models
included in our study, though future work is needed to see if
it is a better differentiator for other models.

B. Limitations and Future Work
Our future work is informed by the current limitations of

the CAS pipeline. First, although we have shown how differ-
ent LLMs cause varying performance in the CAS pipeline,
we have not yet determined what level of human-likeness is
sufficient for actual human users. Future work must therefore
evaluate the CAS pipeline with real human users in order to
determine acceptable levels of action similarity, final state
similarity, and length discrepancy.

Second, we have not yet embedded the CAS pipeline into
an actual EUP pipeline. Future work must therefore connect
the CAS pipeline with an actual EUP tool, such as Polaris
[3], in order to fully realize the vision of our system. We
must also test the effectiveness of the CAS pipeline within
a full-fledged EUP workflow via additional user studies.

Third, the CAS pipeline itself still has room for improve-
ment. Although we tested our pipeline with LLMs that have
had a subset of their weights updated via QLoRA, we have
yet to test it with LLMs that have had all of their weights
updated via full fine tuning. Additionally, we have yet to
determine whether fine-tuning on different datasets (e.g.,
ALFRED [31]) affects model performance. Future work must
thereby investigate how different datasets and fine-tuning
paradigms affect the performance of the CAS pipeline.

Lastly, while investigated in the context of end-user pro-
gramming, our pipeline may be useful to a variety of other
applications, including scheduling assistance. Future work
must investigate the CAS pipeline in these other contexts.

REFERENCES

[1] J. Huang and M. Cakmak, “Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts,” in 12th
ACM/IEEE Int. Conf. on Human-Robot Interact., 2017.

[2] G. Huang, P. S. Rao, M.-H. Wu, X. Qian, S. Y. Nof, K. Ramani,
and A. J. Quinn, “Vipo: Spatial-visual programming with functions
for robot-iot workflows,” in Proc. CHI Conf. on Human Factors in
Comput. Syst., 2020.

[3] D. Porfirio, M. Roberts, and L. M. Hiatt, “Goal-oriented end-user
programming of robots,” in 19th ACM/IEEE Int. Conf. on Human-
Robot Interact., 2024.

[4] S. Rosenthal and L. M. Hiatt, “Human-centered decision support for
agenda scheduling,” in Proc. 19th Int. Conf. on Autonomous Agents
and MultiAgent Syst., 2020.

[5] P. J. Modi, M. Veloso, S. F. Smith, and J. Oh, “CMRadar: A personal
assistant agent for calendar management,” in Int. Bi-Conf. Workshop
on Agent-Oriented Information Syst. Springer, 2004.

[6] J. A. Auld, Agent-based dynamic activity planning and travel schedul-
ing model: Data collection and model development. University of
Illinois at Chicago, 2011.

[7] T. Miller, P. Howe, and L. Sonenberg, “Explainable AI: Beware of
inmates running the asylum or: How I learnt to stop worrying and
love the social and behavioural sciences,” in IJCAI 2017 Workshop on
Explainable Artificial Intelligence (XAI), 2017.

[8] T. Chakraborti, S. Sreedharan, S. Grover, and S. Kambhampati, “Plan
explanations as model reconciliation – an empirical study,” in 14th
ACM/IEEE Int. Conf. on Human-Robot Interact., 2019.

[9] C. H. Song, B. M. Sadler, J. Wu, W.-L. Chao, C. Washington, and
Y. Su, “LLM-Planner: Few-shot grounded planning for embodied
agents with large language models,” in Proc. IEEE/CVF Int. Conf.
on Computer Vision, 2023.

[10] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and
M. Katz, “Generalized planning in pddl domains with pretrained large
language models,” Proc. AAAI Conf. on Artif. Intell., 2024.

[11] S. Kambhampati, K. Valmeekam, L. Guan, M. Verma, K. Stechly,
S. Bhambri, L. P. Saldyt, and A. B Murthy, “Position: LLMs can’t
plan, but can help planning in LLM-modulo frameworks,” in Proc.
41st Int. Conf. on Machine Learning, 2024.

[12] M. J.-Y. Chung, J. Huang, L. Takayama, T. Lau, and M. Cakmak,
“Iterative design of a system for programming socially interactive
service robots,” in Social Robotics, 2016.

[13] D. Glas, S. Satake, T. Kanda, and N. Hagita, “An interaction design
framework for social robots,” in Proc. Robot.: Sci. and Syst., 2011.

[14] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: a
graphical tool for humanoid robot programming,” in 18th IEEE Int.
Symp. on Robot and Human Interactive Commun., 2009.

[15] N. Leonardi, M. Manca, F. Paternò, and C. Santoro, “Trigger-action
programming for personalising humanoid robot behaviour,” in Proc.
2019 CHI Conf. on Human Factors in Comput. Syst., 2019.

[16] Y. Cao, Z. Xu, F. Li, W. Zhong, K. Huo, and K. Ramani, “V.Ra:
An in-situ visual authoring system for robot-IoT task planning with
augmented reality,” in Proc. Designing Interactive Syst. Conf., 2019.

[17] E. Senft, M. Hagenow, R. Radwin, M. Zinn, M. Gleicher, and
B. Mutlu, “Situated live programming for human-robot collaboration,”
in ACM Symp. User Interface Softw. Technol., 2021.

[18] B. Ikeda, M. Gramopadhye, L. Nekervis, and D. Szafir, “Marcer:
Multimodal augmented reality for composing and executing robot
tasks,” in 20th ACM/IEEE Int. Conf. on Human-Robot Interact., 2025.

[19] Y. Ge, Y. Dai, R. Shan, K. Li, Y. Hu, and X. Sun, “Cocobo: Exploring
large language models as the engine for end-user robot programming,”
in IEEE Symp. Vis. Lang. Human-Centric Comput., 2024.

[20] V. Schlegel, B. Lang, S. Handschuh, and A. Freitas, “Vajra: step-by-
step programming with natural language,” in Proc. 24th Int. Conf. on
Intelligent User Interfaces, 2019.

[21] J. F. Gorostiza and M. A. Salichs, “End-user programming of a social
robot by dialog,” Robot. Auton. Syst., vol. 59, 2011.

[22] S. Beschi, D. Fogli, and F. Tampalini, “Capirci: A multi-modal system
for collaborative robot programming,” in End-User Develop., 2019.

[23] N. G. Buchina, P. Sterkenburg, T. Lourens, and E. I. Barakova, “Natu-
ral language interface for programming sensory-enabled scenarios for
human-robot interaction,” in 28th IEEE International Conf. on Robot
and Human Interactive Commun., 2019.

[24] U. B. Karli, J.-T. Chen, V. N. Antony, and C.-M. Huang, “Alchemist:
LLM-aided end-user development of robot applications,” in 19th
ACM/IEEE Int. Conf. on Human-Robot Interact., 2024.

[25] K. Mahadevan, B. Lewis, J. Li, B. Mutlu, A. Tang, and T. Grossman,
“Imageinthat: Manipulating images to convey user instructions to
robots,” in 20th ACM/IEEE Int. Conf. on Human-Robot Interact., 2025.

[26] K. Valmeekam, K. Stechly, A. Gundawar, and S. Kambhampati,
“Planning in strawberry fields: Evaluating and improving the planning
and scheduling capabilities of lrm o1,” arXiv:2410.02162, 2024.

[27] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do as
i can, not as i say: Grounding language in robotic affordances,”
arXiv:2204.01691, 2022.

[28] M. M. de Graaf and B. F. Malle, “How people explain action (and
autonomous intelligent systems should too).” in AAAI Fall Symp. on
Artificial Intelligence for Human-Robot Interaction, 2017.

[29] X. Puig et al., “Virtualhome: Simulating household activities via
programs,” in 2018 IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2018.

[30] D. Porfirio, A. Sauppé, M. Cakmak, A. Albarghouthi, and B. Mutlu,
“Crowdsourcing task traces for service robotics,” in ACM/IEEE Int.
Conf. on Human-Robot Interact., 2023.

[31] M. Shridhar et al., “Alfred: A benchmark for interpreting grounded
instructions for everyday tasks,” in IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2020.

[32] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” in Advances in Neural Infor-
mation Processing Syst., 2023.

[33] M. Fox, A. Gerevini, D. Long, and I. Serina, “Plan stability: Replan-
ning versus plan repair,” in Proc. Int. Conf. on Automated Planning
and Scheduling, 2006.

[34] D. Porfirio, M. Roberts, and L. M. Hiatt, “An interaction specification
language for robot application development,” in 20th ACM/IEEE Int.
Conf. on Human-Robot Interact., 2025.

