
An Interaction Specification Language for Robot
Application Development

David Porfirio, Mark Roberts, Laura M. Hiatt
Navy Center for Applied Research in Artificial Intelligence

U.S. Naval Research Laboratory
Washington, D.C., USA

{david.j.porfirio2, mark.c.roberts20, laura.m.hiatt}.civ@us.navy.mil

Abstract—Robot programming languages that represent tasks
as graph structures are both popular and accessible among
programming novices and experts. However, these languages
are largely decoupled from robots’ automated task planning
capabilities, rendering developers unable to explicitly leverage
their robot’s ability to plan its own actions. We thereby created
the Interaction Specification Language (ISL), which enables de-
velopers to import and apply elements from a robot planning do-
main in a graph-based programming paradigm. For developers,
ISL provides flexibility in the reliance on automated planning.
For researchers, the release of our open-source ISL lexer and
parser is intended to promote standardization and test-driven
development. We additionally provide a metric by which ISL
programs can be evaluated.

Index Terms—programming languages; planning; robotics

I. BACKGROUND AND SUMMARY

Robot application development (RAD) is the process of
constructing robot programs, or static specifications of a
robot’s behaviors. These specifications often include control
flows of the robot’s actions, decisions, and goals, as well as
how the robot should interpret external stimuli. A key factor
that distinguishes RAD from other approaches (e.g., policy
learning and automated planning) is the substantial human
involvement in control flow creation. RAD tools must capture
human input that can assume several different forms, such as
visual symbolic input [1], [2], tangible input [3], programming
by demonstration [4], programming in augmented reality [5],
[6], and natural language instructions [7]. Many of these tools
directly represent robot control flows as, or can easily translate
them into, graph-based structures (e.g., state machines). These
structures are both popular [8] and accessible [9].

As the autonomous capabilities of robots increase, however,
modern RAD languages must keep pace with robots’ ability
to plan and act without needing hard-coded human input.
Presently, there is a lack of standardized graph-based RAD
languages that explicitly link to these planning capabilities.
Without explicitly linking from a RAD language to a planning
domain, the RAD language requires additional compilation or
interpretation to be executed at runtime.

To tighten the connection between RAD and planning, we
present Version 1.0 of the Interaction Specification Language
(ISL). Depicted in Figure 1, ISL is intended to exist as a

common backend language for RAD tools. Our core tech-
nical contribution is that ISL wraps a popular language for
specifying planning problems, namely the Planning Domain
Definition Language (PDDL) [10], to allow users to specify
lifted, graph-based configurations of actions or goals. Rather
than specifying a single goal (i.e., a set of goal states) as with
existing planning languages like PDDL, ISL enables users to
chain both goals and actions together as paths through a finite
state machine. In effect, ISL treats the connection between any
two nodes as an individual planning problem going from the
first node’s goal conditions (or implied goal conditions if the
node contains an action) to those of the second. At runtime,
upon achieving the goal conditions of one node, the robot then
transitions to executing the next plan heading to the next node.

ISL poses several benefits to RAD. For developers, the
linkage of ISL to a planning language affords developers
flexibility over the granularity of how ISL programs are
specified. That is, developers are free to specify only a few
high-level goals and let a task planner resolve the robot’s run-
time behaviors; alternatively, users can hard code incremental
actions for the robot to execute in sequence. Choosing between
goals and actions affords users further control over program
interpretation at runtime. With actions, users enforce that the
robot must “do” something; with goals, users enforce that the
robot must “achieve” something irrespective of what it does.
For the research community, we intend for our open-sourced
ISL parsing software to facilitate test-driven development and
reproducibility of RAD tools. Furthermore, we provide a
metric that researchers can use to evaluate ISL programs.

Close viable alternatives to ISL exist from the task and
motion planning community, such as expressing temporal goal
orderings in linear temporal logic (LTL) [11]. However, our
choice of ISL syntax is inspired by accessible RAD languages
that more explicitly encode execution flow. Additionally, agent
planning programs bear representational similarity to ISL [12]
but have not yet resulted in a standardized RAD language.

In prior work, we proposed guidelines for ISL [13] and used
an early version of ISL to represent programs created with
the Polaris RAD tool [14]. Until now, the language itself and
supporting code have not yet been released. Included in this
release are an ISL lexer and parser, software that represents
parsed ISL programs, and test cases that show ISL usage.
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Fig. 1. Our vision of ISL’s place in the robot application development pipeline. RAD researchers (top center) create tools for developers (left) to use. ISL
provides a common, underlying program representation for these tools (bottom center). Programs written in ISL must accept a planning domain as input
(bottom left). We envision different robot platforms providing their own planning domains. The robot can then execute ISL programs (right).

II. PURPOSE

ISL is intended to assist both robot application developers
and RAD researchers in four different ways. First, derived
from our technical contribution, ISL provides flexibility for
robot application developers. Namely, developers are free to
specify as much or as little detail as desired, depending on the
needs of the context. For example, robots assisting with aircraft
maintenance might require exact, hard-coded instructions due
to the task’s precise nature, whereas robots offering food
deliveries at caregiving facilities might instead require smaller
sets of higher-level goals to preserve the robot’s adaptability
in an inherently dynamic environment.

Second, as depicted in Figure 1, ISL is intended to promote
standardization by providing a common language for RAD
researchers. Third, we intend for our release of the test cases
that guided ISL’s creation to promote researcher adoption
of test-driven development. Lastly, ISL is intended to assist
researchers evaluate their RAD systems. We demonstrate an
evaluation metric for ISL programs in §III-D.

III. CHARACTERISTICS

The characteristics of ISL are twofold—(1) a grammar that
defines the ISL language for expressing programs within a
computational representation (called goal automata), and (2)
a lexer and parser that interpret the language.

To assist in describing the grammar, consider a mobile
water delivery robot. Various entities exist in the robot’s
environment, such as locations, containers, and people. The
robot can move around, fetch and fill containers with water,
and put the containers down. The robot can also sense its
environment. Figure 2 depicts a planning domain snippet in
PDDL-like syntax, including operators that describe what the
robot can do and predicates that describe what it can sense.

The predicates, operators, and entities in a PDDL planning
domain and problem description merely describe the building
blocks that can be used to construct a full waterbot ISL
program, depicted in Figure 3. The role of ISL is to instantiate
and assemble these components into a control flow. In effect,
rather than expressing just a single goal as with PDDL,
developers can express an automaton of temporally linked
goals and actions. Transitioning between an ISL-specified goal
or action requires invoking a task planner.

1 domain waterbot
2 (predicates
3 (agentHas ?a - agent, ?i - item)
4 (agentNear ?a - agent, ?l - loc)
5 (isFull ?c - container)
6 ...
7 )
8 operator moveTo(?a - agent, ?l - loc) ...
9 operator grab(?a - agent, ?i - item) ...

10 operator put(?a - agent, ?i - item) ...
11 operator fill(?a - agent, ?i - item, ?s -

source) ...
12 ...

Fig. 2. PDDL-like domain snippet for waterbot. Ellipses (...) indicate gaps in
the code. The full domain would include operator preconditions and effects,
and the full problem description would include entities and their starting states.

1 import waterbot
2
3 labels
4 ready: [predicate: agentHas,
5 params: [robot, cup] &
6 predicate: isFull,
7 params: [cup] &
8 predicate: agentNear,
9 params: [robot, person]

10 ],
11 delivered: [predicate: agentHas,
12 params: [person, cup]
13 ],
14 athome: [action: moveTo,
15 params: [robot, home]
16 ]
17 endlabels
18
19 module
20 st: [0: init, 1: ready, 2: athome];
21 guard: [0: delivered]
22
23 [] 0 -> 1;
24 [] 1 & guard=0 -> 2;
25 endmodule

Fig. 3. ISL program for a water delivery robot.

A. Grammar

Our description of the ISL grammar follows Extended
Backus–Naur Form (EBNF). Brackets (i.e., “[]”) represent
optional notation, braces (i.e., “{}”) represent zero or more
of the enclosed notation, and parentheses (i.e., “()”) group
notation together. Our description omits minor details for



readability, such as semicolons, but these details are present
in the delivery robot example (Figure 3). Also note that some
notional details of the grammar have already been described
in prior work [13], but in the course of its formalization, ISL
exhibits several substantial changes from the notional version.

To begin, programs written in ISL are structured within
four distinct sections—(1) import statements, (2) zero or more
labels, (3) a module, and (4) an optional set of options.

program := import id
labels {label} endlabels
module module endmodule
[options {options} endoptions]

The import statement loads PDDL domain and problem
files into ISL and is depicted on Line 1 of the delivery
robot code. The domain file is necessary to provide ISL
with the operators that the robot can perform and predicates
that describe the observable characteristics of the world. The
problem file provides ISL with the initial state of the world.

Labels are defined after the import statement, shown on
Lines 3 through 17. Labels are similar to the token with the
same name in the PRISM model checker [15], and facilitate
grouping together ground elements as sets. For example, let
a := robotIn(kitchen) and b := isActive(coffee maker)
be ground predicates. With labels, we can describe both
predicates simultaneously, such as label c := a∧ b. Formally,
labels can be invoked via the syntax below.

label := id : [operator] | predicateList
predicateList := {predicate}

Labels include zero to one operators and zero or more
predicates. Intuitively, within a label, while zero or more
predicates can be true at the same time, the robot can only be
performing at most one action (i.e., an instantiated operator)
at any given moment. In Figure 3, the ready token (Line
4 ) depicts a label with three predicates: the robot has a

cup, the cup is filled with water, and the robot is near the
person. The delivered label (Line 11) is then comprised
of a single predicate: the person has the cup. In contrast to both
ready and delivered, the athome label (Line 14) depicts
a label with one operator1 for the robot to perform: go home.
Operators and predicates in ISL are defined in EBNF, each as
combinations of one symbol and zero or more parameters.

operator := action : id, params : {id}
predicate := predicate : id, params : {id}

In Figure 3, Lines 19 through 25 depict the module.
Modules define goal automata, which instantiate labels.

module := states [guards] {transition}

1Operators use the “action” token in ISL script.

Intuitively, a goal automaton is a transition system [16], but
where nodes in the transition system can be defined in terms
of high-level goals or low-level actions. Transition systems,
and thus goal automata, define processes or procedures as sets
of nodes (called states in transition system vocabulary) and
transitions between these nodes. Transitions may optionally
be guarded; that is, a specific condition must be true in order
for the transition to take place. Transition systems additionally
include an initial state, a set of atomic propositions (i.e.,
labels), and a mapping function that assigns labels to states.
As more than one state can be assigned the same label, labels
themselves cannot be treated as states. Thus, the first step in
defining the module is to initialize the set of states and map
them to labels.

states := st : (int : init, {int : id})
guards := guard : {int : id}

Transitions between states are formally defined below.
transition := int [guard = int] → int

For example, Lines 19 through 25 of Figure 3 assemble
a small transition system that instantiates these labels. From
the initial state (defined as 0 via the init token on Line
20), the robot will first attempt to achieve ready (Line 23).
Crucially, a contribution of ISL is that developers need not
define the sequence of steps for the robot to perform in order
to achieve ready. Rather, the developer leverages the robot’s
ability to plan and act autonomously by simply defining the
objective for the robot to achieve in terms of goal predicates.

After achieving ready, the delivered label is used as a
guard for transitioning to state 2. Specifically, the expression
on line 24 states, “from state 1, once the person has received
the cup of water, the robot must travel back to home base.”

Lastly, options encompass an optional list of parameters that
affect how ISL programs are parsed or interpreted at runtime
and are similar to the “contingency sheet” proposed in our
prior work [13]. An example option is conditional effects,
which allows PDDL files to be imported that use conditionals
in operator effects. Figure 3 does not include any options.

B. Lexer and Parser

ISL programs define goal automata, which must still be
compiled to create a goal automaton instance. In the first
step of compilation, a lexer reads user-written programs and
outputs tokens that can be read by a parser. The parser then
assembles an abstract syntax tree from the tokens. The abstract
syntax tree is then used to assemble a goal automaton. We
use an off-the-shelf Python library, PLY [17], for lexing and
parsing and our own custom code for goal automata assembly.

C. Integration with a Task Planner

Once parsed to goal automata, ISL programs are ready for
planner integration. Prior work details how existing approaches
can be used to create plans from goal automata [14]—namely,
each ISL state is treated as a separate planning task. In
the waterbot example portrayed in Figure 3, the plan that



results from the goal automaton expressed via ISL script
could involve the following sequence of actions to achieve the
ready label: (1) moveTo(robot, cup), (2) grab(robot, cup),
(3) moveTo(robot, sink), (4) fill(robot, cup, sink), and (5)
moveTo(robot, person). When the person has grabbed the cup,
the robot will perform a final action: (6) moveTo(robot, home).

The algorithm for creating plans from goal automata is not
a contribution of this paper, though our ISL parsing software
takes steps towards facilitating this creation. In particular, the
ISL parser is already tightly coupled with an off-the-shelf task
planner—the Unified Planning library [18]. The ISL parser
uses the Unified Planning library in order to assist representing
ISL programs as goal automata. Specifically, the domain and
problem files imported by ISL script are parsed by the Unified
Planning library, and the resulting sets of operators, predicates,
and entities are supplied to ISL parser. ISL predicates are then
represented as Unified Planning fluents, operators as Unified
Planning actions, and entities as Unified Planning objects.

D. Case Study on Evaluating ISL Programs

We described our vision for how ISL can facilitate the stan-
dardization of RAD tools (see Figure 1) and afford flexibility
to developers. In addition, ISL has enabled us to create an
evaluation metric for programs written in it based on planner
reliance. By calculating the ratio of actions in a generated
plan to user-specified ISL states, we can determine whether
a developer relies more (i.e., a high ratio of actions to ISL
states) or less (i.e., a low ratio of actions to ISL states) on
the planner. In the example in §III-C, this ratio is 6 planner
actions to the 2 ISL states defined on Line 20 of Figure 3 (not
including the initial state). Thus, for every user-specified ISL
state, the robot will perform an average of 3 actions.

As a case study, consider the RAD tool from prior work,
Polaris [14], which tested a full version and an ablated version
of the tool in a between-subjects user study. Both versions use
the ISL as a backend program representation. In both versions,
users specified goal automata to satisfy a prompt. In the full
version, the average action-state ratio of user-created programs
is 2.99 (SD = 2.23), indicating that for every state specified
in ISL, the robot will perform about 3 actions. By contrast,
the ablated version exhibits an average ratio of 2.43 (SD =
2.06). Therefore, on average, users of the full version more
heavily utilized the planner. This difference is not statistically
significant according to a Mann-Whitney U test.

IV. CODE STRUCTURE

ISL software2 includes three primary components—(1) the
lexer and parser, (2) the goal automata representation, and
(3) a test script. Calling the lexer and parser results in an
ISL program being represented as a goal automaton instance.
Calling the test script allows multiple programs to be parsed,
which is useful for testing extensions to the language.

The software is written in the Python programming lan-
guage for accessibility among researchers. For additional ac-
cessibility, we provide a suite of ISL test cases accompanied

2ISL software is available at https://github.com/dporfirio/ISL-Parser.

by importable PDDL domain and problem files. Test cases are
bundled together within groups. ISL Version 1.0 is accompa-
nied by a group of general test cases that check a wide variety
of syntax, waterbot test cases that test ISL programs specified
at a high, goal-oriented level, and food-assembly test cases that
test ISL programs specified at a lower, step-by-step level.

V. USAGE

RAD researchers can use, modify, and extend ISL.
a) Parser Usage: ISL programs are written with the

.isl extension. Developers or researchers who write ISL
programs must be equipped with PDDL domain and prob-
lem files that define the predicates, operators, and en-
tities available to the robot. Both files must be placed
in the same directory and be named domain.pddl and
problem.pddl. The import statement in Figure 3 thereby
loads the path containing waterbot/domain.pddl and
waterbot/problem.pddl. Developers must also have
access to a command-line interface for parsing their programs.
The command for parsing a program is shown below, where
program.isl is the path to the ISL program.

python isl.py program.isl

ISL is equipped with a suite of test programs. The command
below depicts how a batch of test cases can be run, in which
-g is an optional argument for specifying a group of tests,
and groupname specifies the name of the group.

python test.py [-g groupname]

The tests/README.md file in the ISL codebase details the
procedure for writing new ISL test cases.

b) Maintaining and Extending ISL: We are releasing
ISL under the MIT open-source license. Community-driven
maintenance of ISL will follow a founder-led open-source
governing model. In this model, community members can fork
the ISL repository and make changes to how ISL programs are
parsed and represented as goal automata. Community members
may then submit merge requests to the public ISL repository to
be reviewed by the authors. The authors will make additional
changes to the public branch on a regular basis.

Ongoing work on ISL includes adding support for express-
ing current-state uncertainty [19], specifically to handle the
case that the robot is unsure of the starting locations of known
items in its environment. Other ongoing work includes the
addition of maintenance goals to the goal automata represen-
tation to define goals that must be maintained throughout the
remainder of a task. We also intend for ISL to support real-
valued planning constraints in the future, as is often necessary
for task and motion planning [20].
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